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1 Chapter 1

This section will first introduce basic linear algebra knowledge required in this
lecture series, largely adapted from [1]. A graph G = (V,E) is a the set of
vertices or nodes V , and a set of edges E which are unordered tuples from
V ×V . We let n = |V | and m = |E|. The Adjacency matrix A associated with
G is defined as follows:

Ai,j
def
=

{
1 if (i, j) ∈ E

0 otherwise

A is thus a n× n matrix.
The Degree matrix D associated with G is defined as follows:

Di,j
def
=

{
di if i = j

0 otherwise

where di is the number of neighbours of vertex i. Note that D is a n × n
diagonal matrix with positive entries. Also of note is that A and D are real
symmetric matrices, a fact we will heavily use going forward.

A vertex cut is a partition of V into two disjoint subsets. That is, for a vertex
S ⊆ V , we can express (S, V \ S) as a cut of the graph, where |S| ≤ |V \ S|.

A flow is another perspective of a cut. To broadly explain flow without
going to details, we could consider the graph as a water pipe system where
water flows from a source vertex the sink vertex, with the edges acting as pipes
for the water to flow through. The maximum flow problem aims to find the
maximum amount of flow that can be sent from the source to the sink without
violating capacity constraints. One thing that relates the cut to the flow is the
max-flow min-cut theorem, which states that the maximum flow of a network is
equal to the capacity of the maximum cut. This theorem has many applications,
such as the projection selection problem where given a number of projects and a
number of machines, we determine which projects to select and which machines
to be purchased to maximize profit.

The thing that we are interested in is however not quite the minimum cut but
rather the minimum cut in respective to total number of vertices that is being
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separated. This problem arises quite naturally out of flows following different
laws e.g. the heat equation. Or as we will see later this quantity is related to
the rate of mixing for a random walk. Other often commonly cited examples
include traffic flows, clusters in a network etc. Some of the rationale behind
these connections we will see later.

Either way we need a good linear algebraic way to represent cuts. One way
is to represent a cut (S, V \ S) by a vector x ∈ Rn, where

xi
def
=

{
1 if i ∈ S

0 otherwise
,

Then the number of edges across the cut is
∑

{u,v}∈E(xu−xv)
2. Since every

homogeneous polynomial of degree 2 can be realized as xTMx. In studying
cuts in a graph G = (V,E), we will want to choose a matrix L such that

xTLx =
∑

{u,v}∈E

(xu − xv)
2

where the boolean vector x ∈ {0, 1}V represents a cut in the graph. Then the
right-hand side would represent the number of edges that cross the cut.

A matrix that satisfies this property would be the Laplacian matrix of G,
defined by D −A. Hence, we will obtain the following expression:

xT (D −A)x =
∑

{u,v}∈E

(xu − xv)
2.

This could be verified by showing that both the left-hand side and right-hand
side are equal to ∑

v

dvx
2
v − 2

∑
{u,v}∈E

xuxv.

The quantity we are interested in is called the edge expansion (also known
as the Cheeger constant or the isoperimetric constant), given by

ϕ(G)
def
= min

S⊂V ;|S|≤n/2

|E(S, V \ S)|
|E(S)|

.

Continuing in the vein of the previous linear algebraic definition then for our
vector x, we can define the edge expansion as :

Φ(G)
def
= min

x:xi∈{0,1};|x|1≤n/2

x⊤Lx

x⊤Dx

The objective we are minimising above is closely related to the Rayleigh quo-
tient. In particular for a symmetric matrix M ∈ Rn×n, The Rayleigh quotient
of x with respect to M is defined as follows:

RM (x) =
x⊤Mx

xTx
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The Rayleigh quotient is useful in min-max theorems to get the exact values of
all eigenvalues. Clearly then for a d regular graph our optimization problem is
the same as optimizing the Rayleigh quotient with respect to L under certain
constraints on the vector x. In fact in general using the fact that D is invertible,
we have that

Φ(G)
def
= min

x:xi∈{0,1};|x|1≤n/2

x⊤Lx

x⊤Dx
= min

x:xi∈{0,1};|x|1≤n/2

x⊤DLD−1/2x

x⊤Dx
.

An obvious relaxation then would be to consider the naive relaxation of the
problem to

min
x

x⊤Lx

x⊤Dx
.

We then get that

Φ(G) = min
x

x⊤Lx

x⊤Dx
= min

x

x⊤D−1/2LD−1/2x

x⊤x
.

This relaxation then reduces our problem to minimizing the Rayleigh quotient
with respect to D−1/2LD−1/2. We define or denote D−1/2LD−1/2 as a normal-
ized Laplacian L̃. Unfortunately however by itself this relaxation fails for the
simple reason that the all 1 vector causes this quantity to become 0. However
if we put the additional constraint that x ⊥ 1, then things do kind of work out.
This result is called the Cheeger’s inequality which we will explore later.

Before we reach there we should remind ourselves of some fundamentals of
Linear Algebra.

Theorem 1.1 (Spectral Theorem). Let M ∈ Rn×n be a symmetric matrix with
real-valued entries, then there are n real numbers, which may not be distinct,
λ1, ..., λn and n orthonormal real vectors x1, ...,xn,xi ∈ Rn such that xi is an
eigenvector of λi.

Proof sketch. The fundamental theorem of algebra states that every polynomial
has at least one complex root. Using the fact that M is a real symmetric matrix,
we can then conclude that the eigenvalues of M are real. Hence, M must have
a real eigenvalue λ1 with real eigenvector v1. We can then show that M maps
vectors that are orthogonal to v1 to vectors that are orthogonal to v1. We could
then use induction to expand this to all n.

For undirected graphs, the Adjacency matrix is symmetric. Hence we could
apply the Spectral Theorem.

Now we will introduce a variational characterization of eigenvalues for real
symmetric matrices.

Theorem 1.2. Let M ∈ Rn×n be a real symmetric matrix, and λ1 ≤ λ2 ≤ ... ≤
λn be the eigenvalues of M in non-increasing order. Then,

λk = min
k−dim V

max
x∈V−{0}

xTMx

xTx
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where V is a k-dimensional subspace of Rn

Proof. Let v1, ...,vn be orthonormal eigenvectors associated with the eigenval-
ues λ1, ..., λn as guaranteed by the Spectral Theorem. For every x =

∑k
i=1 aivi

in such a space, the numerator of the Rayleigh quotient is given by:∑
i,j

aiajv
T
i Mvj =

∑
i,j

aiajλjv
T
i vj

=

k∑
i=1

a2iλi

≤ λk ·
k∑

i=1

a2i

By the same argument, the denominator is
∑k

i=1 a
2
i . Hence, RM (x) ≤ λk.

Thus,

λk ≥ min
k−dim V

max
x∈V−{0}

xTMx

xTx

To prove the other direction, we first let V be any k-dimensional subspace. We
want to show that V must contain a vector of Rayleigh quotient ≥ λk. Let S be
the span of vk, ...,vn. Since S has dimension of n− k+1 and V has dimension
k, they will have some non-zero vector x in common. Similarly, we can write
x =

∑n
i=k aivi. The numerator of the Rayleigh quotient is then

n∑
i=k

λia
2
i ≥ λk

∑
i

a2i

Since the denominator is
∑

i a
2
i , RM (x) ≥ λk.

This theorem gives us the following consequences:

Corollary 1.3. If M is a real symmetric matrix and λ1 ≤ λ2 ≤ ... ≤ λn be its
eigenvalues then :

λ1 = min
x̸=0

RM (x)

λ2 = min
x ̸=0,x⊥x1

RM (x)

λn = max
x ̸=0

RM (x)

We now state the relation of the eigenvalues of L̃ with the graph G.

Theorem 1.4. Let G be an undirected graph, D and A be the degree and ad-
jacncecy matrices of G respectively, and L̃ = I −D− 1

2AD− 1
2 be the normalized

Laplacian matrix of G. Let λ1 ≤ λ2 ≤ ... ≤ λn be real eigenvalues of L̃. Then
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1. λ1 = 0 and λn ≤ 2

2. λk = 0 if and only if G has at least k connected components.

3. λn = 2 if and only if at least one of the connected components of G is
bipartite.

Proof sketch. Note that the Rayleigh quotient of D1/2x with respect to L̃ is
xTD1/2L̃D1/2x

xTDx
. Clearly, the denominator and numerator are both positive.

Hence,
λ1 = minx ̸=0 RL̃(D

1/2x) ≥ 0
If we take x = 1, then the Rayleigh quotient is 0. Hence 0 is the smallest
eigenvalue of L̃. Thus λ1 = 0
Using the variational characterization as described earlier, as well as the quadratic
form of the numerator, we can express

λk = min
k−dim X

max
x∈X−{0}

xTD1/2L̃D1/2x

xTDx

= min
k−dim X

max
x∈X−{0}

xT (D −A)x

xTDx

= min
k−dim X

max
x∈X−{0}

∑
(u,v)∈E(xu − xv)

2

xTDx

We can thus deduce that the multiplicity of zero is equal to the number of
connected components by considering both directions.
Finally, we have

λn = max
x̸=0

RL̃(x)

= max
x̸=0

RL̃(D
1/2x)

= 2−min
x̸=0

∑
(u,v)∈E(xu + xv)

2

xTDx

We observe that 2xTx − xTLx = 1
d

∑
(u,v)∈E(xu + xv)

2 in order to get from
line 2 to line 3. Thus, λn ≤ 2 and λn = 2 if and only if one of the connected
components of G is bipartite.

For simplicity sake, we will consider the d−regular case. If G = (V,E) is an
undirected d−regular graph, and S ⊆ V is a set of vertices, then we call

ϕ(S)
def
=

E(S, V \ S)
d|S|

the edge expansion of S. The quantity ϕ(S) is the average fraction of neigh-
bours outside of S for a random element of S, and it compares the actual number
of edges crossing the cut (S, V \ S) with the trivial upper bound d|S|.
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Algorithm 1: Fiedler’s Algorithm

Input: graph G(V,E), vector x ∈ RV

Output: S ⊆ V such that ϕ(S, V \ S) ≤ 2
√

ϕ(G)
1 Sort the vertices according to the values xv, and let v1, ..., vn be the sorted

order.
2 Find a k that minimizes ϕ({v1, ..., vk}, {vk+1, ..., vn}) and output such a cut.

We define the edge expansion of a cut (S, V \ S) as

ϕ(S, V \ S) def
= max{ϕ(S), ϕ(V \ S)} =

E(S, V \ S)
d ·min{|S|, |V \ S|}

The edge expansion of a graph G is defined as

ϕ(G)
def
= min

S
ϕ(S, V \ S) = min

S:1≤|S|≤ |V |
2

ϕ(S)

Finding cuts of small expansion is a problem of interest that have many applica-
tions. It is an open question whether there is a polynomial-time approximation
with a constant-factor approximation ratio.

Algorithm 1 is an algorithm that was proposed by Fiedler, and it works
well in practices when x is the eigenvector of λ2. Fiedler’s algorithm could be
implemented in O(|E| + |V | log |V |) time, because it takes O(|V | log |V |) time
to sort the vertices, and the cut of minimal expansion can be found in O(E)
time. To see why we could output a cut with edge expansion upper bounded
by 2

√
ϕ(G), we will introduce the Cheeger’s Inequality.

Theorem 1.5 (Cheeger’s Inequality). [1] Let G be an undirected regular graph
and λ1 ≤ λ2 ≤ ... ≤ λn be the eigenvalues of the normalized Laplacian L̃, with
repetitions, then

λ2

2
≤ ϕ(G) ≤

√
2λ2

Furthermore, if (S, V \ S) is the cut found by Fiedler’s algorithm given the
eigenvector of λ2, then

ϕ(S, V \ S) ≤
√
2λ2

From Theorem 1.5, it follows that if (S, V \ S) is the cut found by Fiedler’s
algorithm given an eigenvector of λ2, then we have

ϕ(S, V \ S) ≤ 2
√

ϕ(G)

We will break up the proof of Cheeger’s Inequality. First, we start with the
lower bound.
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1.1 Proof of λ2

2
≤ ϕ(G)

Let S be a set of vertices such that ϕ(S, V \ S) = ϕ(G). For every set S, the
expansion of S is the same as the Rayleigh quotient of the indicator vector 1S .
The indicator vector of a set S is the boolean vector where the vth coordinate
of 1S is 1 if and only if v ∈ S. Hence

RL̃(1S) ≤ ϕ(G)

RL̃(1V \S) ≤ ϕ(G)

From the variational characterization of eigenvalues, we have

λ2 = min
2−dim X

max
x∈X−{0}

RL̃(x)

We prove λ2 ≤ 2ϕ(G) by showing that all the vectors in the 2-dimensional space
X of linear combinations of the orthogonal vectors 1S , 1V \S have Rayleigh
quotient at most 2ϕ(G). This is a consequence of the following Lemma.

Lemma 1.6. Let x and y be two orthogonal vectors and let M be a positive
semidefinite matrix. Then

RM (x+ y) ≤ 2 ·max{RM (x), RM (y)}

Proof. Let 0 ≤ λ1 ≤ ... ≤ λn be eigenvalues of M and v1, ...,vn be the cor-
responding eigenvectors. Writing x =

∑
i aivi and y =

∑
i bivi, the Rayleigh

quotient of x+ y is∑
i λi(ai + bi)

2

||x+ y||2
=

∑
i λi(ai + bi)

2

||x||2 + ||y||2
(||x+ y||2 = ||x||2 + ||y||2 by orthogonality)

≤
∑

i 2λi(a
2
i + b2i )

||x||2 + ||y||2
(By Cauchy-Schwarz inequality)

=
2RM (x) · ||x||2 + 2RM (y) · ||y||2

||x||2 + ||y||2

≤ 2max{RM (x), RM (y)}

Note that the Cauchy-Schwarz inequality we used is that (a+b)2 ≤ 2a2+2b2.

Since 1 is an eigenvector for 0, which is the smallest eigenvalue of L of G,
from the variational characterization of eigenvalues, we have

λ2 = min
x⊥1

∑
{u,v}∈E(xu − xv)

2

d
∑

v x
2
v

and any eigenvector x of λ2 is a minimizer of the above expression. We will
prove the next part of Cheeger’s Inequality by showing the following stronger
result:
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Lemma 1.7. Let x be a vector orthogonal to 1 and let (S, V \ S) be the cut
found by Fiedler’s algorithm given x. Then

ϕ(S, V \ S) ≤
√
2RL̃(x)

This stronger result is useful as one often runs Fiedler’s algorithm on an ap-
proximate eigenvector, and this Lemma does not require x to be an eigenvector,
as long as its Rayleigh quotient is small.

To prove Lemma 1.7, we introduce the next 2 lemmas.

Lemma 1.8. Let x ∈ RV be orthogonal to 1. Then there is a vector y ∈ RV
≥0

with at most |V |/2 non-zero entries such that

RL̃(y) ≤ RL̃(x)

Futhermore, for every 0 < t ≤ maxv(yv), the cut ({v : yv ≥ t}, {v : yv < t}) is
one of the cuts considered by Fiedler’s algorithm on input x.

Proof. We first observe that for every constant c,

RL̃(x+ c1) ≤ RL̃(x)

because the numerator of RL̃(x+c1) and the numerator of RL̃(x) are the same,
and the denominator of RL̃(x+ c1) is ||x+ c1||2 = ||x||2 + ||c1||2 ≥ ||x||2.
Let m be the median value of the entries of x, and let x′ def

= x − m1. Then
RL̃(x

′) ≤ RL̃(x), and the median of the entries of x′ is zero. This means that
x′ has at most |V |/2 positive entries and at most |V |/2 negative entries.
Defining the following:

x+
v

def
=

{
x′
v if x′

v > 0

0 otherwise
, x−

v
def
=

{
−x′

v if x′
v < 0

0 otherwise

We then have

x′ = x+ + x−

Note that x+ and x− are orthogonal, non-negative and each of them has at most
|V |/2 nonzero entries. Also for every t, the cuts defined by the set {v : x+

v ≥ t}
is one of the cuts considered by Fiedler’s algorithm on input x, because it is the
cut

({v : xv < t+m}, {v : xv ≥ t+m})

Similarly, for every t, the cut defined by the set {v : x−
v ≥ t} is also one of the

cuts considered, because it is the cut

({v : xv ≤ m− t}, {v : xv > m− t})
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It remains to show that at least one of x+ or x− has Rayleigh quotient smaller
than or equal to the Rayleigh quotient of x′, and hence smaller than equal to
the Rayleigh quotient of x. We claim

RL̃(x
′) =

∑
{u,v}(xu − xv)

2

||x′||2

=

∑
{u,v}((x

+
u − x+

v )− (x−
u − x−

v ))
2

||x+||2 + ||x−||2

≥
∑

{u,v}(x
+
u − x+

v )
2 + (x−

u − x−
v )

2

||x+||2 + ||x−||2

=
RL̃(x

+) · ||x+||2 +RL̃(x
−) · ||x−||2

||x+||2 + ||x−||2

≥ min{RL̃(x
+), RL̃(x

−)}

We just need to justify that for every edge {u, v} we have

((x+
u − x+

v )− (x−
u − x−

v ))
2 ≥ (x+

u − x+
v )

2 + (x−
u − x−

v )
2

If {u, v} is an edge between two non-positive vertices, or between two non-
negative vertices, then the expression is equal. If it is an edge between a positive
vertex u and a negative vertex v, then the left-hand side equation is equal to
(x+

u + x−
v )

2 and the right-hand side is equal to (x+
u )

2 + (x−
v )

2.

Lemma 1.9. Let y ∈ RV
≥0 be a vector with non-negative entries. Then there is

a 0 < t ≤ maxv{yv} such that

ϕ({v : yv ≥ t}) ≤
√
2RL̃(y)

Proof. We will provide a probabilistic proof for this. Since the Rayleigh quotient
is scalar-invariant, without loss of generality we can assume maxv yv = 1. We
consider the probabilistic process where we pick t > 0 such that t2 is uniformly
distributed in [0, 1]. Defining the non-empty subset St = {v : yv ≥ t}. We claim
that

E(E(St, V \ St))

E(d|St|)
≤

√
2RL̃(y)

Lemma 1.9 follows from this claim because of Lemma 1.10.
On the denominator, we see that

E [d|St|] = d ·
∑
v∈V

P [v ∈ St] = d
∑
v

y2v

because

P [v ∈ St] = P [yv ≥ t] = P
[
y2v ≥ t2

]
= y2v
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Now to bound the numerator, we say that an edge is cut by St if one endpoint
is in St and another is not. We have

E[E(St, V \ S)] =
∑

{u,v}∈E

P[{u, v} is cut]

=
∑

{u,v}∈E

|y2v − y2u|

=
∑

{u,v}∈E

|yv − yu| · (yu + yv)

Applying Cauchy-Schwarz inequality,

E[E(St, V \ S)] ≤
√ ∑

{u,v}∈E

(yv − yu)2 ·
√ ∑

{u,v}∈E

(yv + yu)2

Applying Cauchy-Schwarz inequality again in the form of (a+ b)2 ≤ 2a2 + 2b2,
we have ∑

{u,v}∈E

(yv + yu)
2 ≤

∑
{u,v}∈E

2y2v + 2y2u = 2d
∑
v

y2v

Combining everything together, we have

E(E(St, V \ St))

E(d|St|)
≤

√
2

∑
{u,v}∈E(yv − yu)2

d
∑

v y
2
v

Lemma 1.10. Let X and Y be random variables such that P[Y > 0] = 1. Then

P
[
X

Y
<

E(X)

E(Y )

]
> 0

Proof sketch. Let r := E(X)
E(Y ) . We can then use the linearity of expectation to

prove this.

Finally, to prove Lemma 1.7, we have to use Lemma 1.8 and Lemma 1.9.

Proof of Lemma 1.7. Let x be orthogonal to 1, let (SF , V \ SF ) be the cut
found by Fiedler’s algorithm given x. Let y be the non-negative vector with at
most |V |/2 positive such that RL̃(y) ≤ RL̃(x) as seen in Lemma 1.8. Then, by
Lemma 1.9, we can let 0 < t ≤ maxv{yv} be a threshold such that

ϕ({v : yv ≥ t}) ≤
√
2RL̃(y) ≤

√
2RL̃(x)

The set St := ϕ({v : yv ≥ t}) contains at most |V |/2 vertices, and the cut
(St, V \ St) is one of the cuts considered by Fiedler’s algorithm on input x, so

ϕ(SF , V \ SF ) ≤ ϕ(St, V \ St) = ϕ(St) ≤
√
2RL(x)
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