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In this chapter, we will use H = {z : Im(z) > 0} to denote the open upper
half plane, and z to be the vector {z1, ..., zn}.

1 Stable Polynomials

We have previously defined the notion of real stable polynomials and introduced
some Lemmas and Theorems that was used to prove Theorem 2.13 in Chapter
2.

Definition 1.1. A polynomial f(z) is real stable (resp. stable) if and only if
for every e ∈ Rn

>0 and x ∈ Rn, the univariate restriction

t 7→ f(te+ x)

is real-rooted (resp. stable).

Lemma 1.2. For positive semidefinite matrices A1, ..., An ⪰ 0 and Hermitian
B, the determinantal polynomial

det

(
n∑

i=1

ziAi +B

)

is real stable.

Proof sketch. Assume that Ai are positive definite and consider a univariate
restriction

t 7→ det

(
t

n∑
i=1

eiAi +

(
n∑

i=1

xiAi +B

))

Since the ei are positive, M :=
∑n

i=1 eiAi ≻ 0 has a negative aquare root M−1/2

and we may write the above as

t 7→ det
(
M−1/2

)
det

(
tI +M1/2

(
n∑

i=1

xiAi +B

)
M1/2

)
det
(
M−1/2

)
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Since this is a multiple of a characteristic polynomial of a Hermitian matrix, it
must be real-rooted.

The positive semidefinite case could be handled by taking a limit of positive
definite matrices. Recall that the limit along each univariate restriction must
be real-rooted or zero.

Theorem 1.3. [2] If q(x, y) is a real stable polynomial of degree d, then there
are real symmetric d × d positive semidefinite matrices A,B and symmetric
matrix C such that

q(x, y) = ±det(xA+ yB + C).

This theorem is known to be false for more than 2 variables.

Example 1.4. Let G = (V,E) be a connected undirected graph. Then the
spanning tree polynomial

PG(z) =
∑

spanning tree T⊂E

∏
e∈T

ze

is real stable.

The following Theorem states the closure properties of some linear transfor-
mations.

Theorem 1.5. The following linear transformations on C[z] maps every stable
polynomial to another stable polynomial or to zero.

1. Permutation. f(z1, z2, ..., zn) 7→ f(zσ(1), ..., zσ(n)) for some permutation
σ : [n]→ [n].

2. Scaling. f(z1, ..., zn) 7→ f(az1, ..., zn) where a > 0.

3. Diagonalization. f(z1, z2, ..., zn) 7→ f(z2, z2, z3, ..., zn) ∈ C[z2, . . . , zn].

4. Inversion. f(z1, zn) 7→ zd1f(−1/z1, . . . , zn) where d = deg1(f) is the degree
of z1 in f .

5. Specialization. f 7→ f(a, z2, ..., zn) ∈ C[z2, ..., zn] where a ∈ H ∪ R.

6. Differentiation. f 7→ ∂
∂z1

f .

Proof. (1) to (3) follows from definition.
(4) follows because z 7→ −1/z preserves the upper half plane.
(6) is a consequence of the Gauss-Lucas Theorem below.

Theorem 1.6 (Gauss-Lucas). If f ∈ C[z], the roots of f ′(z) lie in the convex
hull of the roots of f(z).
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Proof. Let λ1, ..., λn ∈ C be the roots of f and assume WLOG that f and f ′

have no common roots. If f ′ = 0, then we have

0 =
f ′(z)

f(z)
=

n∑
i=1

1

z − λI
=

n∑
i=1

z − λi

|z − λi|2

Rearranging, we obtain

z =

n∑
i=1

|z − λi|−2∑n
i=1 |z − λi|−2

λi

which is a convex combination.

1.1 A probabilistic application

1.1.1 Poisson Binomial Distribution

The distribution of a sum of independent Bernoulli random variables is called
a Poisson Binomial Distribution, that is

X =

n∑
i=1

Xi

where Xi are independent Bernoullis with E (Xi) = bi ∈ (0, 1), and taking
pk = P [X = k]. We are interested in knowing if such a distrubtion is unimodal,
that is whether there is some m such that p0 ≤ p1 ≤ ... ≤ pm ≥ ... ≥ pn.

Consider the following generating function of the distribution

q(x)
def
=

n∑
k=0

pkx
k =

n∏
i=1

(bix+ (1− bi))

where the independence of Xi yields a factorization of q(x) into linear terms.
This factorization implies that q(x) is real-rooted with strictly negative roots
λi := − 1−bi

bi
< 0. Using the following Newton’s Inequalities, which states

Theorem 1.7 (Newton Inequalities). If
∑n

k=0 akx
k is real-rooted, then(

ak(
n
k

))2

≥ ak−1(
n

k−1

) ak+1(
n

k+1

)
for k = 1, ..., n− 1.

After cancellation of the factorials, it reduces to

a2k ≥
(
1 +

1

k

)(
1 +

1

n− k

)
ak−1ak+1,
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which is strictly stronger than

a2k ≥ ak1
ak+1 (log-concavity)

This implies unimodality, where the probabilities pk must be unimodal. Now we
introduce the next proposition, which sill be used in proving the next Theorem.

Proposition 1.8. Suppose p(x) =
∑n

k=0 akx
k is a real-rooted polynomial with

nonnegative coefficients and a0 ̸= 0), p(1) = 1. Then there are independent
Bernoulli random variables X1, ..., Xn such that

ak = P

[
n∑

i=1

Xi = k

]

Proof. Factor p(x) as C
∏n

i=1(x+ λi) for some λi > 0. Since p(1) = 1, we must
have

C =
1∏n

i=1(1 + λi)

Then we have

p(x) =

n∏
i=1

(bix+ (1− bi))

for bi =
1

1+λi
∈ (0, 1). Taking Xi with E (Xi) = bi proves the claim.

1.1.2 Application

Suppose G = (V,E) is a graph, F ⊂ E is a cut, and T is a uniformly random
spanning tree of G. The distribution of the random variable |F ∩T | is a Poisson
Binomial Distribution.

Theorem 1.9. The distribution of |F ∩T | is a Poisson Binomial Distribution.

Proof. The generating polynomial of a random variable T ∩ F is obtained by
setting all the variables ze, e /∈ 1:

QG(z|F ) = PG(zF , 1, ..., 1),

where we observe that the coefficient of the monomial zS :=
∏

e∈S ze in QG is
equal to the number of spanning trees T for which T ∩ F = S. As setting the
variables to real numbers preserve stability, QG is real stable. Thus its diagonal
restriction

QG(x, x, ..., x) =

|F |∑
k=0

xkP [|T ∩ F | = k]

must be real-rooted. Normalizing by QG(1, 1, ..., 1) and applying the previous
proposition finishes the proof.

4



1.2 Characterization of Stability Preserving Operators

Let Ck[z1, ..., zn] be the vector space of complex polynomials in z1, ..., zn in
which each variable has degree of at most k. We call a linear transformation
nondegenerate if its range has dimension at least 2.

Theorem 1.10. A nondegenerate linear operator T : Ck [z1, ..., zn]→ C [z1, ..., zn]
preserves stability iff the 2n-variate polynomial

GT (z1, ..., zn, w1, ..., wn) := T
[
(z1 + w1)

k
... (zn + wn)

k
]

is stable, where the operator T only acts on the z variables.

This theorem says that there is a single 2n−variate polynomial whose sta-
bility guarantees the stability of all of the n−variate images T (f).

1.2.1 Heilmann-Lieb Theorem

Given a graph with nonnegative edge weights we ≥ 0, e ∈ E, we define

mk :=
∑

matching M,|M |=k

∏
e∈M

we

The relevant generating function is the matching polynomial

µG(x) :=

n/2∑
k=0

xn−2k(−1)kmk.

We state the following theorem:

Theorem 1.11 (Heilmann-Lieb). For every weighted graph G with nonnegative
edge weights, µG(x) is real-rooted.

Proof. Given a graph G with positive edge weights wuv > 0, uv ∈ E, consider
the multivariate polynomial

QG(z) =
∏

uv∈E

(1− wuvzuzv),

where the variables zv are indexed by v ∈ V . As QG is a product of real stable
polynomials, it is real stable. Consider the multiaffine part operator

MAP : C [z]→ C1 [z]

defined on monomials of degree at most m := |E| in each variable by

MAP

(∏
e∈S

zde
e

)
=

{∏
e∈S ze if de ≤ 1 for all e

0 otherwise
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The symbol of this operator is given by

GMAP(z,w) = MAP

(∏
v∈V

(zv + wv)
m

)
=
∏
v∈V

(
wm

v +mzvw
m−1
v

)
=
∏
v∈V

wm−1
v (wv +mzv) ,

which is real stable. Since MAP is nondegenerate, Theorem 1.10 states that it
preserves stability. Thus,

MAP (QG) =
∑

matching M

(−1)|M |
∏

edge uv∈M

wuv

∏
vertex v∈M

zv

is real stable, and its univariate diagonal restriction zv ← x, v ∈ V :∑
matching M

(−1)|M |x2|M |
∏

uv∈M

wuv

is real-rooted. But this is just the reversal of µG(x)

2 Multiaffine Real Stable Polynomials

A multiaffine polynomial is a multivariate polynomial in which each variable has
degree at most one. We use R1 [z1, ..., zn] or RMA [z1, ..., zn] to denote vector
spaces of multiaffine polynomials.

Definition 2.1. f ∈ R [z1, ..., zn] is Strongly Rayleigh if for every i ̸= j,

∂zif(x) · ∂zjf(x) ≥ ∂zizjf(x) · f(x) ∀x ∈ Rn.

Theorem 2.2. [1] A real multiaffine polynomial f ∈ R1 [z1, ..., zn] is stable if
and only if it is Strongly Rayleigh.

Proof. (⇒) Suppose f is real stable. Fix x ∈ Rn. Consider the bivariate
restriction

g(s, t) := f(x+ sei + tej)

which is a multiaffine bivariate polynomial

g(s, t) = a+ bs+ ct+ dst

with real coefficients

a = f(x) b = ∂zif(x) c = ∂zjf(x) d = ∂zizjf(x)

Since every univariate restriction of g along a direction in the positive orthant
R2

>0 is a restriction of a specialization of f (by fixing all the variables other
than zi, zj ), all such restrictions are real-rooted and g is itself real stable.
Observe by applying the closure properties that for every λ > 0, the polynomial
g(λr, r) = a+ (λb+ c)r+ dλr2 must be real-rooted, hence (λb+ c)2 ≥ 4adλ for
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all λ > 0. If b and c are nonzero of the same sign then setting λ = c/b yields
the inequality. If they have opposite signs or if one of them is zero then we can
see that g cannot be real stable unless it is zero.

(⇐) We prove this by induction. Suppose f(z, zn+1) = g(z) + zn+1h(z) is
Strongly Rayleigh, with g, h ∈ R1 [z1, ..., zn] . Note that both g(z), h(z) are
Strongly Rayleigh by closure properties. Let zn+1 = α ∈ R. Observe that
g(z) + αh(z) ∈ R1 [z] is Strongly Rayleigh. By induction, it must be stable for
every α. If it is identically zero for some α, then g(z) ≡ −αh(z) and we may
factor f as f(z, zn+1 = (zn+1 − α)h(z), which is stable and we are done.

Otherwise, g(z) + αh(z) ̸= 0 for all α and for all z ∈ Hn. This means that

Φ(z) :=
g(z)

h(z)
/∈ R ∀z ∈ Hn

Since Φ is continuous on Hn we must have either

Im(Φ(z)) > 0 ∀z ∈ Hn or

Im(Φ(z)) < 0 ∀z ∈ Hn

In the latter case it is immediate that f(z, zn+1 is stable. In the former, we find
that by changing the sign of zn+1, f(z,−zn+1) must be stable. By the forward
direction of the theorem proven earlier, this means that it is Strongly Rayleigh.
Applying the definition of Strongly Rayleigh to the pairs i, n+1, we obtain the
reversed inequalities:

∂zif(x) · ∂zn+1
f(x) ≤ ∂zizn+1

f(x) · f(x) ∀x ∈ Rn

Since f is also Strongly Rayleigh these must be equalities. We could check that
this is only possible when g = h.

2.1 Multiaffine Stability Preservers

In this subsection, we derive a sufficient condition for establishing that a linear
transformation on C1 [z1, ..., zn] preserves stability. The main purpose of this
subsection is to show that a transformation T preserves stability of n−variate
polynomials. It suffice to show that the stability of a single 2n−variate gener-
ating polynomial derived from it.

Lemma 2.3 (Lieb-Sokal). Suppose f(z) + wg(z) ∈ C [z, w] is stable and the
degree of z1 in g is at most 1. Then

f(z)− ∂z1g(z) ∈ C [z]

is stable.

Proof. By closure properties, f and g must be stable. Let α ∈ H. Observe that
−α−1 ∈ H. Hence

h(z, α) := αg(z1 − α−1, z2, ..., zn) ̸= 0
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for all z ∈ Hn. Since g is affine in z1, then h is a multiaffine stable polynomial.
Expanding the first variable, we find that

h(z, α) = αg(z)− (∂z1g)(z)

is stable. Rearranging, we have

Im

(
−∂z1g(z)

g(z)

)
≥ 0

for all z ∈ Hn. Similarly, since f+wg is stable, we know that Im(f(z)/g(z)) ≥ 0
for all z ∈ Hn. Hence, summing up we ahve

Im

(
−∂z1g(z) + f(z)

g(z)

)
≥ 0 ∀z ∈ Hn,

so ∂z1g(z) + f(z) + vg(z) ∈ R [z, v] is stable. Specializing v to 0 gives the
result.

This Lemma is used in the proof of the following Borcea-Branden Theo-
rem, which follows because every linear operator on a space of bounded degree
polynomials can be written as an appropriate sum of differential operators.

Theorem 2.4 (Borcea-Branden). Suppose T : C1 [z]→ C [z] is a linear opera-
tor. If the algebraic symbol

GT (z1, ..., zn, w1, ..., wn) := T

 n∏
j=1

(zj + wj)

 =
∑
S⊂[n]

T (zS)w[n]\S

is stable then T is stability-preserving.

Proof. Suppose f(z) =
∑

S⊂[n] aSz
S ∈ C1 [z] is stable. Since wj 7→ −1/wj

preserves H, the hypothesis implies that

w1...wnG(z1, ..., zn,−1/w1, ...,−1/wn) =
∑
S⊂[n]

T (zS)(−1)n−|S|wS

is stable. Multiplying by f(v1, ..., vn) ∈ C1[v1, ..., ], we find that∑
S⊂[n]

T (zS)(−1)n−|S|wSf(v1, ..., vn)

is stable. Since f is multiaffine, we can use Lieb-Sokal Lemma to replace each
wi by −∂vi , which shows∑

S⊂[n]

T (zS)(−1)n−|S|(−1)|S|(∂S
v )f(v1, ..., vn)
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is stable, where ∂S
v :=

∏
j∈S ∂vj . Setting v1 = ... = vn = 0 preserves stability.

So ∑
S⊂[n]

T (zS)(−1)n(∂S
v )f(0, ..., 0)

is stable. Since (∂S
v f = aS , the expression is equal to

(−1)n
∑
S⊂[n]

T (zS)aS = (−1)nT (f).

Thus T preserves stability as we desire.

2.2 Polarization and High Degree Polynomials

Polarization is a tool that allows one to transfer results about multiaffine poly-
nomials to polynomials of higher degree.

Definition 2.5. Given a polynomial f ∈ Ck[z1, ..., zn], the polarization of f is
the unique polynomial

F ∈ C1[z11, ..., z1k, ..., zn1, ..., znk]

such that

1. The restriction zji ← zj , j = 1, ..., n is equal to the original polynomial:

F (z1, ..., z1, ..., zn, ..., zn) = f(z1, ..., zn)

2. For every j = 1, ..., n, F is symmetric in zj1, ..., zjn.

The polarization operation is denoted by F = Π↑
k(f). The inverse is called

projection and denoted by f = Π↓
k(F ). It is trivial to see that if F is stable

then f = Π↓
k(F ) is also stable. The converse is also true, which is the following

theorem.

Theorem 2.6. If f ∈ Ck [z1, ..., zn] is stable then Π↑
k(f) is also stable.

The proof is a result of the following Lemma:

Lemma 2.7. If f ∈ C1 [z1, ..., zn] is stable, then for every θ ∈ [0, 1] :

(1− θ)f (z1, z2, ..., zn) + θf (z2, z1, ..., zn)

is stable.

Proof. Setting all the variables other than z1, z2 to values in H, it is sufficient
to prove the claim for bivariate polynomials. We notice that

T : g(z1, z2) 7→ (1− θ)g(z1, z2) + θg(z2, z1)
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is a linear operator on C1 [z1, z2]. Its symbol is

GT (z1, z2, w1, w2) = T ((z1 + w1)(z2 + w2))

= z1z2 + w1((1− θ)z2 + θz1) + w2((1− θ)z1 + θz2) + w1w2

We will show that GT is Strongly Rayleigh, which also implies that it is stable,
which finishes the proof by Theorem 2.4. By symmetry, we only need to check
the following two inequalities:

∂z1GT · ∂z2GT − ∂z1z2GT ·GT ≥ 0

and

∂z1GT · ∂w1
GT − ∂z1w1

GT ·GT ≥ 0

where the polynomials are evaluated at real points. We could simplify the
expressions by computation to θ(1− θ)(w1−w2)

2 and θ(z1−w1)
2 respectively.

Hence they must be nonnegative.

Proof sketch of Theorem 2.6. Let Tij,θ be the partial symmetrization operator
which swaps indices i and j with probability θ. It can be shown by induction
that for every n there is a finite sequence of pairs i1j1, ..., iN jN and numbers
θ1, ..., θN so that for every polynomial f (z1, ..., zn) :

TiN jN ,θN ...Ti1j1,θ1f = Eσ

(
f
(
zσ(1), ..., zσ(n)

))
=: Sym(f)

where the expectation is taken over a random permutation σ of [n] - i.e., we can
generate a uniformly random permutation by performing appropriately biased
swaps on a predetermined sequence of pairs. Hence the symmetrization operator
Sym(f) preserves stability.

Let Π↑
k,j where j = 1, . . . , n be the operator which polarizes the variable zj

only, and note that Π↑
k = Π↑

k,n ◦ . . . ◦ Π
↑
k,1. Thus it is sufficient to show that

Π↑
k,1 preserves stability. By setting every zj , j ̸= 1 to a number in H, it suffices

to handle the univariate case. Thus we let

g(z) = C

k∏
i=1

(z − αi)

be a univariate stable polynomial. As each αi /∈ H, each the polynomials zi−αi

are stable, hence the product

G (z1, ..., zk) = C

k∏
i=1

(zi − αi)

is stable. By the previous paragraph, Sym(G) must be stable; but as Sym(G) is
symmetric in z1, ..., zk and projects to g, it is equal to the polarization of g.

Hence a polynomial is stable iff its polarization is stable.
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Theorem 2.8. Suppose T : Ck [z1, . . . , zn]→ C [z1, . . . , zn] is a linear transfor-
mation and

GT (z1, ..., zn, w1, ..., wn) := T
[
(z1 + w1)

k...(zn + wn)
k
]

is stable. Then T preserves stability.

Proof. Define an operator Π↑
k(T ) : C1 [z11, ..., znk]→ C1 [z11, ..., znk] by

Π↑
k(T )(f) = Π↑

k ◦ T ◦Π
↓
k(f)

It is simple to check that GΠ↑
k
(T ) = Π↑

k(GT ). Since GT is stable, Theorem

2.6 implies that GΠ↑
k
(T ) = Π↑

k(GT ) is stable. Hence by Theorem 2.4, Π↑
k(T )

presrves stability. But T = Π↓
k ◦ Π

↑
k(T ) ◦ Π

↑
k which by Theorem 2.6 preserves

stability.
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