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In this chapter, we will use # = {z : Im(z) > 0} to denote the open upper
half plane, and z to be the vector {z1, ..., 2, }.

1 Stable Polynomials

We have previously defined the notion of real stable polynomials and introduced
some Lemmas and Theorems that was used to prove Theorem 2.13 in Chapter
2.

Definition 1.1. A polynomial f(z) is real stable (resp. stable) if and only if
for every e € RY and © € R", the univariate restriction

t— f(te +x)

is real-rooted (resp. stable).

Lemma 1.2. For positive semidefinite matrices A1, ..., A, = 0 and Hermitian
B, the determinantal polynomial

i=1
is real stable.

Proof sketch. Assume that A; are positive definite and consider a univariate
restriction

n n
t — det (tZeiAi + (Z Z‘iAi + B))
i=1 i=1
Since the e; are positive, M := Z?:l e;A; = 0 has a negative aquare root M /2

and we may write the above as

t s det (M*I/Q) det <tl + M2 <2n: ziA; + B) M1/2> det (M*W)
1=1



Since this is a multiple of a characteristic polynomial of a Hermitian matrix, it
must be real-rooted.

The positive semidefinite case could be handled by taking a limit of positive
definite matrices. Recall that the limit along each univariate restriction must
be real-rooted or zero. O

Theorem 1.3. [Z] If q(x,y) is a real stable polynomial of degree d, then there
are real symmetric d X d positive semidefinite matrices A, B and symmetric
matriz C' such that

q(z,y) = £det(zA+yB + C).
This theorem is known to be false for more than 2 variables.

Example 1.4. Let G = (V,E) be a connected undirected graph. Then the
spanning tree polynomial

Pa(z) = > 11 =
spanning tree TCE e€T

is real stable.

The following Theorem states the closure properties of some linear transfor-
mations.

Theorem 1.5. The following linear transformations on C[z] maps every stable
polynomial to another stable polynomial or to zero.

1. Permutation. f(z1,22,...,2n) ¥ f(26(1)s s Zo(n)) for some permutation
o [n] = [n].

2. Scaling. f(z1,...,2n) — f(az1, ..., zn) where a > 0.
3. Diagonalization. f(z1,22,...,2n) — f(22, 22,23, ..., 2n) € Clza, ..., 2p].

4. Inversion. f(z1,2n) > 23f(=1/21,...,2,) where d = deg,(f) is the degree
of z1 in f.

5. Specialization. f > f(a,za,...,2n) € Clza, ..., 2,] where a € HUR.
6. Differentiation. f +— %f.

Proof. (1) to (3) follows from definition.
(4) follows because z — —1/z preserves the upper half plane.
(6) is a consequence of the Gauss-Lucas Theorem below. O

Theorem 1.6 (Gauss-Lucas). If f € Clz], the roots of f'(z) lie in the convex
hull of the roots of f(z).



Proof. Let Aq,...,\, € C be the roots of f and assume WLOG that f and f’
have no common roots. If f/ = 0, then we have

_ ') _
O_f(z) ZZ—AI Z|z—)\\2

Rearranging, we obtain

which is a convex combination. O

1.1 A probabilistic application
1.1.1 Poisson Binomial Distribution

The distribution of a sum of independent Bernoulli random variables is called
a Poisson Binomial Distribution, that is

X = zn:Xi
i=1

where X; are independent Bernoullis with E (X;) = b; € (0,1), and taking

pr = P[X = k]. We are interested in knowing if such a distrubtion is unimodal,

that is whether there is some m such that pg < p; < ... <pm > ... > Dy
Consider the following generating function of the distribution

2) €5 prat = [ biw + (1 - 1))
k=0 i=1

where the independence of X; yields a factorization of q(x) into linear terms.
This factorization implies that ¢(z) is real-rooted with strictly negative roots
A= 71;—,1” < 0. Using the following Newton’s Inequalities, which states

Theorem 1.7 (Newton Inequalities). If Yj_, arx® is real-rooted, then
2

(1) s

G/ G5 G

After cancellation of the factorials, it reduces to

a? > 1—i—l 1—}—L a a
k = A n—Fk k—1Uk+1,

fork=1,..n—1.



which is strictly stronger than
a3 > ap, Qs (log-concavity)

This implies unimodality, where the probabilities pr must be unimodal. Now we
introduce the next proposition, which sill be used in proving the next Theorem.

Proposition 1.8. Suppose p(z) = ZZ:O axz® is a real-rooted polynomial with
nonnegative coefficients and ag # 0),p(1) = 1. Then there are independent
Bernoulli random variables X1, ..., X,, such that

A = P [in = k‘]
i=1

Proof. Factor p(z) as C' T[_,(x + \;) for some X\; > 0. Since p(1) = 1, we must
have

1

Oy

Then we have

n

pla) = [J bz + (1 = b:))

i=1

for b; = ﬁ € (0,1). Taking X; with E (X;) = b; proves the claim. O

1.1.2 Application

Suppose G = (V, E) is a graph, FF C E is a cut, and T is a uniformly random
spanning tree of G. The distribution of the random variable |[FFNT| is a Poisson
Binomial Distribution.

Theorem 1.9. The distribution of |F'NT| is a Poisson Binomial Distribution.

Proof. The generating polynomial of a random variable T'N F' is obtained by
setting all the variables z.,e ¢ 1:

QG(Z|F) = PG(zFa 17 ceey 1)7

where we observe that the coefficient of the monomial z° := [l.csze in Qg is
equal to the number of spanning trees T' for which TN F' = S. As setting the
variables to real numbers preserve stability, Q¢ is real stable. Thus its diagonal
restriction

|F|
Qa(z,z,...,x) = Zxk]P’HTO F|=k]
k=0

must be real-rooted. Normalizing by Q¢(1,1,...,1) and applying the previous
proposition finishes the proof. O



1.2 Characterization of Stability Preserving Operators

Let Cilz1, ..., 2n] be the vector space of complex polynomials in zi,..., 2z, in
which each variable has degree of at most k. We call a linear transformation
nondegenerate if its range has dimension at least 2.

Theorem 1.10. A nondegenerate linear operatorT : Cy [z1, ..., 2n] = C|z1, ..., 2]
preserves stability iff the 2n-variate polynomial

Gr (21, oy Zn, Wy ey ) =T [(zl + wl)k w20+ wn)k

1s stable, where the operator T only acts on the z variables.

This theorem says that there is a single 2n—variate polynomial whose sta-
bility guarantees the stability of all of the n—variate images T'(f).
1.2.1 Heilmann-Lieb Theorem

Given a graph with nonnegative edge weights w. > 0,e € E, we define

myg = Z H We

matching M,|M|=k ee M
The relevant generating function is the matching polynomial

n/2
e (x) == Z 2" (—1)kmy,.
k=0

We state the following theorem:

Theorem 1.11 (Heilmann-Lieb). For every weighted graph G with nonnegative
edge weights, pug(x) is real-rooted.

Proof. Given a graph G with positive edge weights w,, > 0,uv € E, consider
the multivariate polynomial

QG(Z) = H (1 - wuvzuzv)a

wweE

where the variables z, are indexed by v € V. As Q¢ is a product of real stable
polynomials, it is real stable. Consider the multiaffine part operator

MAP : Clz] — C,4 [7]

defined on monomials of degree at most m := |F| in each variable by
MAP | ] 28] = Meesz ifde<lforalle
ecs 0 otherwise



The symbol of this operator is given by

GMAP(Z,W) = MAP (H (zv —|—wv)m> — H (w;n +msz;”—1) — H wgt—l (wv +m2v),

veV veV veV

which is real stable. Since MAP is nondegenerate, Theorem [1.10| states that it
preserves stability. Thus,

MAP (QG’) = Z (_1)|M| H Woyw H Zy

matching M edge uveM vertex veEM

is real stable, and its univariate diagonal restriction z, — z,v € V:

Z (71)|JVI|$2|M| H Wy

matching M uveM

is real-rooted. But this is just the reversal of ug(z) O

2 Multiaffine Real Stable Polynomials

A multiaffine polynomial is a multivariate polynomial in which each variable has
degree at most one. We use Ry [z1, ..., 2,] or Ryra [21, ..., 2n] to denote vector
spaces of multiaffine polynomials.

Definition 2.1. f € R|zy,..., z,] is Strongly Rayleigh if for every i # j,

Theorem 2.2. [I] A real multiaffine polynomial f € Ry [z1, ..., z,] is stable if
and only if it is Strongly Rayleigh.

Proof. (=) Suppose f is real stable. Fix & € R™. Consider the bivariate
restriction

g(s,t) :== f(x + se; + tej)
which is a multiaffine bivariate polynomial
g(s,t) = a+bs+ ct+ dst
with real coeflicients
a=fl@) b=0.f(2) c=0.f(@) d=0..f(x)

Since every univariate restriction of g along a direction in the positive orthant
R?, is a restriction of a specialization of f (by fixing all the variables other
than z;,z; ), all such restrictions are real-rooted and g is itself real stable.
Observe by applying the closure properties that for every A > 0, the polynomial
g(Ar,7) = a+ (Ab+ ¢)r + dAr? must be real-rooted, hence (Ab+ ¢)? > 4ad\ for



all A > 0. If b and ¢ are nonzero of the same sign then setting A = ¢/b yields
the inequality. If they have opposite signs or if one of them is zero then we can
see that g cannot be real stable unless it is zero.

(<) We prove this by induction. Suppose f(z,zn11) = g(2) + zn11h(2) is
Strongly Rayleigh, with g,h € Ry [z1,...,2,] . Note that both g(z),h(z) are
Strongly Rayleigh by closure properties. Let z,41 = a € R. Observe that
9(z) + ah(z) € Ry [z] is Strongly Rayleigh. By induction, it must be stable for
every a. If it is identically zero for some «, then g(z) = —ah(z) and we may
factor f as f(z,zn+1 = (#2n+1 — @)h(2z), which is stable and we are done.

Otherwise, g(z) + ah(z) # 0 for all o and for all z € H"™. This means that

9(2)
i) =L d¢dR V n
(z) nz) ¢ zeH
Since ® is continuous on H™ we must have either

Im(®(2)) >0 VzeH" or

Im(®(z)) <0 VzeH"
In the latter case it is immediate that f(z, z,+1 is stable. In the former, we find
that by changing the sign of z,11, f(z, —2,+1) must be stable. By the forward
direction of the theorem proven earlier, this means that it is Strongly Rayleigh.

Applying the definition of Strongly Rayleigh to the pairs ¢,n + 1, we obtain the
reversed inequalities:

azi f(il?) ' 8zn+1 f(IB) < azizn_u f(:li) ! f(:l:) Ve e R"

Since f is also Strongly Rayleigh these must be equalities. We could check that
this is only possible when g = h. O

2.1 Multiaffine Stability Preservers

In this subsection, we derive a sufficient condition for establishing that a linear
transformation on Cj [21, ..., 2] preserves stability. The main purpose of this
subsection is to show that a transformation T' preserves stability of n—variate
polynomials. It suffice to show that the stability of a single 2n—variate gener-
ating polynomial derived from it.

Lemma 2.3 (Lieb-Sokal). Suppose f(z) + wg(z) € Clz,w] is stable and the
degree of z1 in g is at most 1. Then

f(2z) = 0.,9(2) € C[2]
is stable.

Proof. By closure properties, f and g must be stable. Let & € H. Observe that
—a~! € H. Hence

hz,a) =ag(z —a ' 2, ...,20) # 0



for all z € H™. Since g is affine in 27, then h is a multiaffine stable polynomial.
Expanding the first variable, we find that

hz,a) = ag(z) - (9:,9)(2)
is stable. Rearranging, we have
Im (é)th(’z)> >0
9(2)

for all z € H™. Similarly, since f+wg is stable, we know that Im(f(z)/g(z)) > 0
for all z € H". Hence, summing up we ahve

Im< Zlg;(l;f( )) >0 VzeH,

so 0;,9(z) + f(2) + vg(z) € R[z,v] is stable. Specializing v to 0 gives the
result. O

This Lemma is used in the proof of the following Borcea-Branden Theo-
rem, which follows because every linear operator on a space of bounded degree
polynomials can be written as an appropriate sum of differential operators.

Theorem 2.4 (Borcea-Branden). Suppose T : Cq [z] — C|[z] is a linear opera-
tor. If the algebraic symbol

n

Gr(21, ey Zny Wiy ey wp) =T H(ZJ +w;) | = Z T(z%)w\s

j=1 SCln]
is stable then T is stability-preserving.

Proof. Suppose f(z) = Y gcpasz® € Ci[z] is stable. Since w; = —1/w;
preserves H, the hypothesis implies that

W1 W G (21, ey 2y — 1/ W1, oo, =1 /wp) = Z T(z%)(=1)" 18IS
ScC[n]

is stable. Multiplying by f(v1,...,v,) € Cq[v1, ...,], we find that

Z T n |S\w5’f( 7,Un)
SCln]
is stable. Since f is multiaffine, we can use Lieb-Sokal Lemma to replace each

w; by —0y,, which shows

Z T(25)(—1)" 1= 1)1102) f(v1, .., v)
(n]



is stable, where 05 := Hjes Oy;. Setting v; = ... = v, = 0 preserves stability.
So

> TE(1"(95) (0, ..., 0)
SCln]

is stable. Since (85 f = ag, the expression is equal to

(=" Y T(z%)as = (=1)"T(f).

SCln]

Thus T preserves stability as we desire. O

2.2 Polarization and High Degree Polynomials

Polarization is a tool that allows one to transfer results about multiaffine poly-
nomials to polynomials of higher degree.

Definition 2.5. Given a polynomial f € Cilz1, ..., 24|, the polarization of f is
the unique polynomial

F e Cl[zu, ceiy Ry ooy Bnly eeey an]
such that

1. The restriction zj; < z;,7 = 1,...,n is equal to the original polynomial:
F(zlv ceey Bly eey By 7Zn) = f(zb 7ZTL)

2. For every j =1,...,n, F is symmetric in 21, ..., Zjn.

The polarization operation is denoted by F' = HZ( f). The inverse is called
projection and denoted by f = Ht(F) It is trivial to see that if F' is stable

then f = Ht(F) is also stable. The converse is also true, which is the following
theorem.

Theorem 2.6. If f € Cy [21, ..., z,] is stable then TIL(f) is also stable.
The proof is a result of the following Lemma:
Lemma 2.7. If f € Cq [z1, ..., 2] is stable, then for every 6 € [0,1] :
(1 =0)f (21,225 s 2n) + 0f (22,21, ...y 2)
is stable.

Proof. Setting all the variables other than zq, zo to values in H, it is sufficient
to prove the claim for bivariate polynomials. We notice that

T:g(z1,20) = (1 = 0)g(21, 22) +0g(22,21)



is a linear operator on Cy [z1, 22]. Its symbol is

Gr(21, 22, w1, w2) = T((21 + wy)(22 + w2))
=z129 + w1 ((1 — 0)zo + 0z1) + w2 ((1 — 0)z1 + 022) + wyws
We will show that G is Strongly Rayleigh, which also implies that it is stable,

which finishes the proof by Theorem By symmetry, we only need to check
the following two inequalities:

aZlC;T' . 8ZQGT - aZ1ZQGT . GT Z 0
and
azlcTVT : a11)1CYVT - azlleT : GT > 0

where the polynomials are evaluated at real points. We could simplify the
expressions by computation to 6(1 — 0)(w; — w2)? and 0(z; — w)? respectively.
Hence they must be nonnegative. O

Proof sketch of Theorem[2.6. Let Tj ¢ be the partial symmetrization operator
which swaps indices ¢ and j with probability 6. It can be shown by induction
that for every n there is a finite sequence of pairs i17j1,...,ixjn and numbers
01, ...,0N so that for every polynomial f (z1,...,25) :

TiNjN,GN"'E1j1,01f = Eo (f (Za(l)7 ...,Za(n))) =: Sym(f)

where the expectation is taken over a random permutation o of [n] - i.e., we can
generate a uniformly random permutation by performing appropriately biased
swaps on a predetermined sequence of pairs. Hence the symmetrization operator
Sym(f) preserves stability.

Let H; j where j = 1,...,n be the operator which polarizes the variable z;

only, and note that H£ = H£ pn©...0 HZ 1- Thus it is sufficient to show that

H;l preserves stability. By setting every z;, j # 1 to a number in H, it suffices
to handle the univariate case. Thus we let

k

g(z) =] (- a)

i=1

be a univariate stable polynomial. As each «; ¢ H, each the polynomials z; — a;
are stable, hence the product

k

G (21, z) = O[] (i — w)

=1

is stable. By the previous paragraph, Sym(G) must be stable; but as Sym(G) is
symmetric in 21, ..., 2 and projects to g, it is equal to the polarization of g. [J

Hence a polynomial is stable iff its polarization is stable.

10



Theorem 2.8. Suppose T : Cy, [21,...,2,] = C|z1,...,24] s a linear transfor-
mation and

GT(Zlv ey Bny W1y eeey wn) =T [(Zl + wl)k"'(zn + wn)k]
is stable. Then T preserves stability.
Proof. Define an operator Hl(T) : Cq [211, s 2nk] = C1 [211, -+, 2Znk] by
IL(T)(f) =11}, o T o T (f)

It is simple to check that Gng (T) = HE(GT). Since G is stable, Theorem

implies that GHZ (T) = T (Gr) is stable. Hence by Theore I (T)

presrves stability. But 7' =TI}, o [T} (T') o IT}, which by Theorem preserves
stability. O

11
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