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We now introduce the concept of graph sparsification, and see how we could
apply this to Ramanujan graphs, mainly in reference to [3].

A dense graph is one where the number of edges is close to the maximum
number of edges that could possibly exist. In other words, a dense graph has a
relatively high edge-to-vertex ratio. A sparse graph is one where the number of
edges is relatively small compared to the number of vertices. In other words, a
sparse graph has a low edge-to-vertex ratio.

The goal of graph sparsification is to approximate a given graph G =
(V,E, ω) by a sparse graph H = (V, F, ω̂) on the same set of vertices. In a
sense, we want to create simpler version of the graph, retaining essential prop-
erties while having less edges to deal with, reducing the complexity of the graph.
This can allow us to make approximations without having too much errors.

1 Graph Sparsification

There are various ways to define graph sparsification. In this chapter, we will
say that H is a κ−approximation of G if for all x ∈ RV ,

xTLGx ≤ xTLHx ≤ κ · xTLGx,

where LG and LH are the Laplacian matrices of G and H.
Note that previously in Chapter 1, we defined Laplacian matrix, Adja-

cency and Degree matrices in the unweighted setting. In a weighted graph
G = (V,E,w), the Laplacian L is still defined the same way by L = D − A.
However, D and A are defined slightly differently, and is defined as follows:

Ai,j
def
=

{
wG(ij) if (i, j) ∈ E

0 otherwise
, Di,j

def
=

{∑
k wG(ik) if i = j

0 otherwise

We could also express xTLx in a quadratic form, given by xTLx =
∑

{u,v}∈E(xu−
xv)

2wuv.
In the case where G is the complete graph, good spectral sparsifiers are

supplied by Ramanujan Graphs. These are d−regular graphs H all of whose
non-zero Laplacian eigenvalues lie between d−2

√
d− 1 and d+2

√
d− 1. Hence
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if we take a Ramanujan graph on n vertices and multiply every edge by n/(d−
2
√
d− 1), we obtain a graph taht κ−approximates the complete graph, for

κ =
d+ 2

√
d− 1

d− 2
√
d− 1

We could show that every graph can be apprixmated at least this well by a
graph with only twice as many edges as the Ramanujan graph, as a d−regular
graph has dn/2 edges.

Theorem 1.1. For every d > 1, every undirected weighted graph G = (V,E, ω)
on n vertices contains a weighted subgraph H = (V, F, ω̂) with ⌈d(n− 1)⌉ edges
that satisfies:

xTLGx ≤ xTLHx ≤

(
d+ 1 + 2

√
d

d+ 1− 2
√
d

)
· xTLGx ∀x ∈ RV .

1.1 The Incidence Matrix and the Laplacian

Given a connected weighted undirected graph G = (V,E,w) with we > 0, if we
orient the edges of G arbitrarily, we can write its Laplacian as L = BTWB,
where Bm×n is the signed edge-vertex incidence matrix, given by

Bi,j
def
=


1 if edge ej enters vertex vi

−1 if edge ej leaves vertex vi

0 otherwise

and Wm×m is the diagonal matrix with We,e = we.
We denote the row vectors of B by {be}e∈E and the span of its column by

B = im(B) ⊆ Rm. Note that bT(u,v) = (xv − xu).
Then L is positive semidefinite since for every s ∈ Rn,

xTLx = xTBTWBx = ||W 1/2Bx||22 ≥ 0.

We also have ker(L) = ker(W 1/2B) = span(1) since

xTLx = 0 ⇐⇒ ||W 1/2Bx||22
⇐⇒

∑
(u,v)∈E

w(u,v)(xu − xv)
2 = 0

⇐⇒ xu − xv = 0 ∀(u, v)
⇐⇒ x is constant, since G is connected.

1.2 Moore-Penrose Pseudoinverse

The Moore-Penrose Pseudoinverse [4] is the generalization of the inverse matrix.
The pseudoinverse generalizes the inverse as the matrix does not have to be
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invertible or a square matrix. We denote the pseudoinverse of the matrix A as
A+. The pseudoinverse is very important in the development of the applications
and the Laplacian Systems. This is because while the Laplacian is a square
matrix, it may not be invertible. Formally, we define the pseudoinverse as
follows:

Definition 1.2. For A ∈ Fm×n, where F is a field of either real or complex
numbers, a pseudoinverse of A is defined as A+ ∈ Fn×m if it satisfy all of the
four following criteria:

1. AA+A = A

2. A+AA+ = A+

3. (AA+)∗ = AA+

4. (A+A)∗ = A+A

Since L is symmetric, we can diagonalize it and write

L =

n∑
i=2

λiuiu
T
i

where λ2, ..., λn are the nonzero eigenvalues of L and u2, ..., un are the corre-
sponding set of orthonormal eigenvectors. The Moore-Penrose Pseudoinverse of
L is then defined as

L+ =

n∑
i=2

1

λi
uiu

T
i .

Notice that ker(L) = ker(L+) and

LL+ = L+L =

n∑
i=2

uiu
T
i ,

which is the projection onto the span of nonzero eigenvectors of L and L+.
Hence LL+ = L+L is the identity on im(L) = ker(L)⊥ = span(1)⊥.

1.3 Rank-one updates

We now introduce a well known theorem in linear algebra, which describes the
behaviour of the inverse of a matrix under rank-one updates. This is also known
as the Sherman-Morisson Formula.

Lemma 1.3 (Sherman-Morisson Formula). [2] If A is a nonsungular n × n
matrix and v is a vector, then

(A+ vvT )−1 = A−1 − A−1vvTA−1

1 + vTA−1v
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A related formula describing the change in determinant is the following

Lemma 1.4 (Matrix Determinant Lemma). If A is nonsingular and v is a
vector, then

det(A+ vvT ) = det(A)(1 + vTA−1v).

1.4 Proof of sparsification

In this subsection, we introduce the Theorem that proves Theorem 1.1. The
proof of this Theorem requires several linear algebraic theorem. Here, we use
A ⪯ B to mean that B−A is positive semidefinite, and idS denotes the identity
operator on a vector space S.

Theorem 1.5. Suppose d¿1 and v1, v2, ..., vm are vectors in Rn with∑
i≤m

viv
T
i = idRn .

Then there exist scalars si ≥ 0 with |{i : si ̸= 0}| ≤ dn such that

idRn ⪯
∑
i≤m

siviv
T
i ⪯

(
d+ 1 + 2

√
d

d+ 1− 2
√
d

)
idRn .

Theorem 1.1 follows from this Theorem.

Proof of Theorem 1.1. Without loss of generality, assume G is connected. Write
LG = BTWB and fix d > 1. Restrict attention to im(LG) ∼= Rn−1 and apply
Theorem 1.5 to the columns {vi}i≤m of

Vn×m = (L+
G)

1
2BTW

1
2

which are indexed by the edges of G and satisfy∑
i≤m

viv
T
i = V V T = (L+

G)
1
2BTWBT (L+

G)
1
2

= (L+
G)

1
2L+

G(L
+
G)

1
2

= idim(LG)

Write the scalars si ≥ 0 guaranteed by the theorem in the m × m diagonal
matrix S(i, i) = si and set LH = BTW

1
2SW

1
2B. Then LH is the Laplacian of

the subgraph H of G with edge weights {w̃i = wisi}i∈E , and H has at most
d(n− 1) edges since at most that many of the si are nonzero. Also,

idim(LG) ⪯
∑
i≤m

siviv
T
i = V SV T ⪯ κ · idim(LG) for κ =

d+ 1 + 2
√
d

d+ 1− 2
√
d
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Then by variational characterization of eigenvalues, we have

1 ≤ yTV SV T y

yT y
≤ κ ∀y ∈ im((LG)

1
2 ) = im(LG)

⇐⇒ 1 ≤
yT (L+

G)
1
2LH(L+

G)
1
2 y

yT y
≤ κ ∀y ∈ im((LG)

1
2 )

⇐⇒ 1 ≤
xTL

1
2

G(L
+
G)

1
2LH(L+

G)
1
2L

1
2

Gx

xTL
1
2

GL
1
2

Gx
≤ κ ∀x ⊥ 1

⇐⇒ 1 ≤ xTLHx

xTLGx
≤ κ ∀x ⊥ 1

Now, we will build up the proof of Theorem 1.5. Theorem 1.5 is well-linked
to the Kadison-Singer conjecture which we will introduce later.

1.5 Proving Theorem 1.5

1.5.1 An Intuition

It is well known that the eigenvalues of A + vvT interlace those of A. In fact
the new eigenvalues can be determined exactly by looking at the characteristic
polynomial of A + vvT which is computed by using the matrix determinant
lemma as below:

pA+vvT (x) = det(xI −A− vvT ) = pA(x)

1−
∑
j

⟨v, uj⟩2

x− λi


where λi are the eignevalues of A and uj are the corresponding eigenvectors.
The polynomial pA+vvT (x) has 2 kinds of zeros λ:

1. pA(λ) = 0
These are equal to the eigenvalues λj of A for which the added vector v is
orthogonal to the corresponding eigenvector uj , and do not ‘move’ upon
adding vvT .

2. pA(λ) ̸= 0 and

f(λ) =

1−
∑
j

⟨v, uj⟩2

λ− λj

 = 0.

These are the eigenvalues which have moved and strictly interlace the old
eigenvalues.
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In the sense of a physical model, we could interpret the eigenvalues λ as
charged particles lying on a slope. On the slope are n fixed, chargeless barriers
at the initial eigenvalues λj and each particle is resting against one of the barriers
under the influence of gravity. Adding the vector vvT corresponds to placing
a charge of ⟨v, uj⟩2 on the barrier corresponding to λj . The charges on the
barriers repel those on the eigenvalues with a force that is proportional to the
charge on the barrier and inversely proportional to the distance from the barrier.
The force from barrier j is given by

⟨v, uj⟩2

λ− λj
,

a quantity which is positive for λj ‘below’ λ, which are pushing the particle
‘upward’, negative otherwise. The eigenvalues moves up the slope until they
reach an equilibrium where the reuplsive forces from the barriers cancel the
effect of gravity, which we take to be a +1 in the downward direction. Thus the
equilibrium condition corresponds exactly to having the total ‘downward pull’
f(λ) equal to zero.

With the physical model to visualize, we can consider what happens to the
eigenvalues of A when we add a random vector from our set {vi}. The first
observation is that for any eigenvector uj , the expected projection of a randomly
chosen vector v ∈ {vi}i≤m is

Ev

(
⟨vi, uj⟩2

)
=

1

m

∑
i

⟨vi, uj⟩2 =
1

m
uT
j

(∑
i

viv
T
i

)
uj =

||uj ||2

m
=

1

m

This does not mean that there is any single vector vi in our set that realises
this expected behaviour of equal projections onto the eigenvectors. But if we
were to add such a vector in the physical model, we would add equal charges of
1/m to each of the barriers and we would expect all the eigenvalues of A to drift
forward ‘steadily’. One might expect that after sufficiently many iterations, the
eigenvalues would all move forward together, with no eigenvalue too far ahead
or behind. We would end up in a position where λmax/λmin is bounded.

This intuition turns out to be right. Adding a vector with equal projections
change the characteristic polynomial in the following manner:

pA+vavgvT
avg

(x) = pA(x)

1−
∑
j

1/m

x− λj

 = pA(x)− (1/m)p′A(x),

since p′A(x) =
∑

j

∏
i̸=j(x− λi). If we start with A = 0, which has the chacter-

istic polynomial p0(x) = xn, then after k iterations, we obtain the polynomial

pk(x) = (I − (1/m)D)kxn

where D in this case is the derivative with respect to x. Iterating the operator
(I − αD) for any α > 0 generates a standard family of orthogonal polynomials,
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the associated Laguerre polynomials [7]. Based on [7], after k = dn iterations,
the ratio of the larges to the smallest zero is known to be

d+ 1 + 2
√
d

d+ 1− 2
√
d

which is what we desire.
Thus to prove this theorem, we will need to show that we can choose a

sequence of vectors that realizes the expected behaviour, as long as we are
allowed to add arbitrary fractional amounts of viv

T
i via the weights si ≥ 0. We

will control the eigenvalues of our matrix by maintaining two barriers as in the
physical model. Thus we will also introduce barrier functions.

1.5.2 Barrier Functions

We begin by defining two barrier potential functions that measure the quality
of the eigenvalues of a matrix.

Definition 1.6. For u, l ∈ R and A a symmetric matrix with eigenvalues
λ1, λ2, ..., λn, we define

Φu(A)
def
= Tr(uI −A)−1 =

∑
i

1

u− λi
(Upper potential)

Φl(A)
def
= Tr(A− lI)−1 =

∑
i

1

λi − l
(Lower potential)

As long as A ≺ uI and A ≻ lI, these potential functions would measure how
far the eigenvalues of A are from the barriers u and l. Particularly, they blow
up as any eigenvalue approaches a barrier, since uI − A or A − lI approaches
a singular matrix. Their strength lies in that they could reflect the location of
all eigenvalues simultaneously. For example, Φu(A) ≤ 1 implies that no λi is
within distance of one of u, no 2 λis are at distance 2, and no k are at distance
k. In terms of physical model, the upper potential is equal to the total repulsion
of the eigenvalues of A from upper barrier u, while the lower potential is the
analogous quantity.

To prove the theorem, we will build the sum
∑

i siviv
T
i iteratively, adding

one vector at a time. Particularly, we will construct a sequence of matrices

0 = A(0), A(1), ..., A(Q)

along with positive constants u0, l0, δU , δL, ϵU , ϵL which satisfy the following
conditions:

1. Initially, the barriers are at u = u0 and l = l0 and the potentials are at

Φu0(A(0)) = ϵU , Φl0(A
(0)) = ϵL
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2. Each matrix is obtained by a rank-one update of the previous one.

A(q+1) = A(q) + tvvT ∃v ∈ {vi}, t ≥ 0.

3. If we increment the barriers u and l by δU and δL respectively at each
step, then the upper and lower potentials do not increase. For every
q = 0, 1, ..., Q,

Φu+δU (A(q+1)) ≤ Φu(A(q)) ≤ ϵU for u = u0 + qδU .

Φl+δL(A
(q+1)) ≤ Φl(A

(q)) ≤ ϵL for l = l0 + qδL.

4. No eigenvalue ever jumps across a barrier. For every q = 0, 1, ..., Q,

λmax(A
(q)) < u0 + qδU , λmin(A

(q)) > l0 + qδL

Now we just need to choose u0, l0, δU , δL, ϵU , ϵL such that after Q = dn steps,
the condition number of A(Q) is bounded by

λmax(A
(Q))

λmin(A(Q))
≤ u0 + dnδU

l0 + dnδL
=

d+ 1 + 2
√
d

d+ 1− 2
√
d

By construction, A(Q) is a weighted sum of at most dn of the vectors as we
desire.

To show that these conditions can be satisfied, we will introduce the following
few lemmas.

Lemma 1.7 (Upper Barrier Shift). Suppose λmax(A) < u and v is any vector.
If

1

t
≥ vT ((u+ δU )I −A)−2v

Φu(A)− Φu+δU (A)
+ vT ((u+ δU )I −A)−1v

def
= UA(v)

then

Φu+δU (A+ tvvT ) ≤ Φu(A) and λmax(A+ tvvT ) < u+ δU .

That is, if we add tvvT to A and shift the upper barrier by δU , then we do not
increase the upper potential.

Proof sketch. Let u′ = u + δU . By Sherman-Morisson Forumula, we can write
the updated potential as:

Φu+δU (A+ tvvT ) = Tr(u′I −A− tvvT )−1

= Tr

(
(u′I −A)−1 +

t(u′I −A)−1vvT (u′I −A)−1

1− tvT (u′I −A)−1v

)
= ...

= Φu+δU (A) +
tvT (u′I −A)−2v

1− tvT (u′I −A)−1v

= Φu(A)− (Φu(A)− Φu+δU (A)) +
vT (u′I −A)−2v

1/t− vT (u′I −A)−1v
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Since UA(v) > vT (u′I − A)−1v, the last term is finite for 1/t ≥ UA(v). By
substituting any 1/t ≥ UA(v), we find Φu+δU (A + tvvT ) ≤ Φu(A). This also
tells us that λmax(A + tvvT < u + δU since if this is not the case, there would
be some positive t′ ≤ t for which λmax(A + t′vvT ) = u + δU . But at such t′,
Φu+δU (A+ t′vvT ) would blow up, establishing that it is finite.

Next, we introduce the analogous version relating to lower barrier.

Lemma 1.8 (Lower Barrier Shift). Suppose λmin(A) > l,Φl(A) ≤ 1/δL, and v
is any vector. If

0 <
1

t
≤ vT (A− (l + δL)I)

−2v

Φl+δL(A)− Φl(A)
− vT (A− (l + δL)I)

−1v
def
= LA(v)

then

Φl+δL(A+ tvvT ) ≤ Φl(A) and λmin(A+ tvvT ) > l + δL

That is, if we add tvvT to A and shift the lower barrier by δL, then we do not
increase the lower potential.

Proof sketch. Observe λmin(A) > l and Φl(A) ≤ 1/δL imp;y that λmin(A) >
l + δL. So for every t > 0, λmin(A+ tvvT ) > l + δL.

Proceeding similarly to the proof for upper potential, let l′ = l + δL. By
Sherman-Morrison, we have

Φl+δL(A+ tvvT ) = Tr(A+ tvvT − l′I)−1

= ...

= Φl(A) + (Φl+δL(A)− Φl(A))− vT (A− l′I)−2v

1/t+ vT (A− l′I)−1v

Rearranging will show that Φl+δ(A+ tvvT ) ≤ Φl(A) when 1/t ≤ LA(v).

Now, the next lemma would identify the conditions in which we can find
a single tvvT which allows us to maintain both potentials. However, to prove
this, we will first need the following lemma.

Lemma 1.9. If λi > 1 for all i, 0 ≤
∑

i(λi − l)−1 ≤ ϵL and 1/δL − ϵL ≥ 0,
then ∑

i(λi − l − δL)
−2∑

i(λi − l − δL)−1 −
∑

i(λi − l)−1
−
∑
i

1

λi − l − δL
≥ 1

δL
−
∑
i

1

λi − l

Proof. We have

δL ≤ 1/ϵL ≤ λi − l
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for every i. So the denominator of the left-most term on the left-hand side is
positive and the implied inequality is equivalent to∑

i

(λi − l − δL)
−2

≥

(∑
i

1

λi − l − δL
−
∑
i

1

λi − l

)(
1

δL
+
∑
i

1

λi − l − δL
−
∑
i

1

λi − l

)

=

(
δL
∑
i

1

(λi − l − δL)(λi − l)

)(
1

δL
+ δL

∑
i

1

(λi − l − δL)(δi − l)

)

=
∑
i

1

(λi − l − δL)(λi − l)
+

(
δL
∑
i

1

(λi − l − δL)(λi − l)

)2

Hence,

δL
∑
i

1

(λi − l − δL)2(λi − l)
≥

(
δL
∑
i

1

(λi − l − δL)(λi − l)

)2

By Cauchy-Schawrtz inequality, we have(
δL
∑
i

1

(λi − l − δL)(λi − l)

)2

≤

(
δL
∑
i

1

λi − l

)(
δL
∑
i

1

(λi − l − δL)2(λi − l)

)

≤(δLϵL)

(
δL
∑
i

1

(λi − l − δL)2(λi − l)

)
(∵
∑
i

(λi − l)−1 ≤ ϵL)

≤δL
∑
i

1

(λi − l − δL)2(λi − l)
(∵

1

δL
− ϵL ≥ 0)

Now, we are ready to introduce and prove the lemma relating to both barrier
shifts.

Lemma 1.10 (Both Barriers). If λmax(A) < u, λmin(A) > l,Φu(A) ≤ ϵU ,Φl(A) ≤
ϵL and ϵU , ϵL, δU , δL satisfy

0 ≤ 1

δU
+ ϵU ≤ 1

δL
− ϵL

then there exists an i and positive t for which

LA(vi) ≥ 1/t ≥ UA(vi), λmax(A+ tviv
T
i ) < u+ δU ,

λmin(A+ tviv
T
i ) > l + δL
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Proof sketch. We need to show that∑
i

LA(vi) ≥
∑
i

UA(vi)

By using Lemma 1.7 and Lemma 1.9, we can show that∑
i

UA(vi) ≤ 1/δU +Φu+δU (A)

≤ 1/δU +Φu(A)

≤ 1/δU + ϵU

Similarly, using Lemma 1.8, we can find that∑
i

LA(vi) ≥ 1/δL − ϵL.

Putting together, we have that∑
i

UA(vi) ≤
1

δU
+ ϵU ≤ 1

δL
− ϵL ≤

∑
i

LA(vi)

With the lemmas established, we are ready to prove Theorem 1.5

Proof of Theorem 1.5. Now we just need to set ϵU , ϵL, δU , δL such that it satis-
fies Lemma 1.10 and gives a good bound on the condition number. Then we can
take A(0) = 0 and construct A(q+1) from A(q) by choosing any vector vi with

LA(q)(vi) ≥ UA(q)(vi)

The existence of this vector is guaranteed by Lemma 1.10. Setting A(q+1) =
A(q) + tviv

T
i for any t ≥ 0 satisfying

LA(q)(vi) ≥
1

t
≥ UA(q)(vi)

It is sufficient to take

δL = 1 ϵL =
1√
d

l0 = − n

ϵL

δU =

√
d+ 1√
d− 1

ϵU =

√
d− 1

d+
√
d

u0 =
n

ϵU

We can check that

1

δU
+ ϵU =

√
d− 1√
d+ 1

+

√
d− 1√

d(
√
d+ 1)

= 1− 1√
d
=

1

δL
− ϵL
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so that the conditions of Lemma 1.10 is satisfied.
The initial potentials are Φ

n
ϵU (0) = ϵU and Φ n

ϵL
(0) = ϵL. After dn steps, we

have

λmax(A
(dn))

λmin(A(dn))
≤ n/ϵU + dnδU

−n/ϵL + dnδL

=

d+
√
d√

d−1
+ d

√
d+1√
d−1

d−
√
d

=
d+ 2

√
d+ 1

d− 2
√
d+ 1

as we desire.

To turn this into an algorithm, one must first compute the vectors vi, which
is done in O(n2m) time. On each iteration, we must compute ((u + δU )I −
A)−1, ((u+ δU )I−A)−2 and the same matrices for the lower potential function.
This is done in O(n3) time.

Finally, we decide which edge to add in each iteration by computing UA(vi)
and LA(vi) for each edge, done in O(n2m) time. Since we run dn number of
times, the total time of the algorithm is O(dn3m).

1.6 Relation to Kadison-Singer conjecture

The Kadison-Singer conjecture is a well-known conjecture that dates back to
1959. The conjecture is equivalent to the Paving conjecture [1]. The following
conjecture is due to Weaver [11].

Conjecture 1.11. There are universal constants ϵ > 0, δ > 0, r ∈ N for which
the following statement holds. If v1, ..., v ∈ Rn satisfy ||vi|| ≤ δ for all i and∑

i≤m

viv
T
i = I,

then there is a partition X1, ..., Xr of {1, ...,m} for which∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈Xj

viv
T
i

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 1− ϵ

for every j = 1, ..., r.

If we had a version of Theorem 1.5 where assuming ||vi|| ≤ δ guaranteed
that the scalers si were all either 0 or some constant β > 0, and gave a constant
approximation of factor κ < β. Then we would have

I ⪯ β
∑
i∈S

viv
T
i ⪯ κ · I
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for S = {i : si ̸= 0}, yielding a proof of conjecture 1.11 with r = 2 and
ϵ = min{1− κ

β ,
1
β } since ∣∣∣∣∣

∣∣∣∣∣∑
i∈S

viv
T
i

∣∣∣∣∣
∣∣∣∣∣ ≤ κ

β
≤ 1− ϵ

and ∣∣∣∣∣
∣∣∣∣∣∑
i∈S

viv
T
i

∣∣∣∣∣
∣∣∣∣∣ = 1− λmin

(∑
i∈S

viv
T
i

)
≤ 1− 1

β
≤ 1− ϵ

2 The Kadison-Singer Problem

The Kadison-Singer problem states the following:

Problem 2.1 (Kadison-Singer Problem). Does every pure state on the (abelian)
von Neumann algebra D of bounded diagonal operators on ℓ2 have a unique
extension to a pure state on B (ℓ2), the von Neumann algebra of all bounded
operators on ℓ2?

A state of a von Neumann algebra R is a linear functional f on R for which
f(I) = 1 and f(T ) ≥ 0 whenever T ≥ 0. The set of states of R is a convex
subset of the dual space of R which is compact in the w∗-topology. By the
Krein-Milman theorem, this convex set is the closed convex hull of its extreme
points. The extremal elements in the space of states are called the pure states
of R [6].

Weaver’s conjecture, as introduced earlier, is a combinatorial form of the
Kadison-Singer problem. A more general form is stated below.

Conjecture 2.2. There exist universal constants η ≥ 2 and θ > 0 so that the
following holds. Let w1, . . . , wm ∈ Cd satisfy ∥wi∥ ≤ 1 for all i and suppose

m∑
i=1

|⟨u,wi⟩|2 = η

for every unit vector u ∈ Cd. Then there exists a partition S1, S2 of {1, . . . ,m}
so that ∑

i∈Sj

|⟨u,wi⟩|2 ≤ η − θ

for every unit vector u ∈ Cd and each j ∈ {1, 2}.

Another equivalent conjecture is the Anderson’s paving conjecture, stated
below:

Conjecture 2.3. For every ϵ > 0 there is an r ∈ N such that for every n × n
self-adjoint complex matrix T with zero diagonal, there are diagonal projections
P1, . . . , Pr with

∑r
i=1 Pi = I such that

∥PiTPi∥ ≤ ϵ∥T∥ for i = 1, . . . , r.
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The main motivation of this section is to use the method of interlacing
families of polynomials that we have gone through in past chapters to prove
these two conjectures. The main results follows in the following theorem:

Theorem 2.4. If ϵ > 0 and v1, ..., vm are independent random vectors in Cd

with finite support such that

m∑
i=1

E (viv
∗
i ) = Id

and
E
(
∥vi∥2

)
≤ ϵ, for all i

then

P

[∥∥∥∥∥
m∑
i=1

viv
∗
i

∥∥∥∥∥ ≤ (1 +
√
ϵ)2

]
> 0

This theorem easily implies the following generalization of Conjecture 2.2.

Corollary 2.5. Let r be a positive integer and let u1, ..., um ∈ Cd be vectors
such that

m∑
i=1

uiu
∗
i = I

and ∥ui∥2 ≤ δ for all i. Then there exists a partition {S1, ...Sr} of [m] such that∥∥∥∥∥∥
∑
i∈Sj

uiu
∗
i

∥∥∥∥∥∥ ≤
(

1√
r
+
√
δ

)2

for j = 1, ..., r

Proof. For each i ∈ [m] and k ∈ [r], define wi,k ∈ Cr×d to be the direct sum of
r vectors from Cd, all of which are 0d ∈ Cd except for the kth one which is a
copy of ui. That is,

wi,1 =


ui

0d

...
0d

 , wi,2 =


0d

ui

...
0d

 , and so on.

Let v1, . . . ,vm be independent random vectors such that vi takes the values
{
√
rwi,k}

r

k=1 each with probability 1/r. These vectors satisfy

Eviv
∗
i =


uiu

∗
i 0d×d . . . 0d×d

0d×d uiu
∗
i . . . 0d×d

...
. . .

...
0d×d 0d×d . . . uiu

∗
i

 and ∥vi∥2 = r ∥ui∥2 ≤ rδ.

14



So
m∑
i=1

E (viv
∗
i ) = Ird

and we can apply Theorem 2.4 with ϵ = rδ to show that there exists an assign-
ment of each vi so that

(1 +
√
rδ)2 ≥

∥∥∥∥∥
m∑
i=1

viv
∗
i

∥∥∥∥∥ =

∥∥∥∥∥∥
r∑

k=1

∑
i:vi=wi,k

(√
rwi,k

) (√
rwi,k

)∗∥∥∥∥∥∥
Setting Sk = {i : vi = wi,k}, we obtain∥∥∥∥∥∑

i∈Sk

uiu
∗
i

∥∥∥∥∥ =

∥∥∥∥∥∑
i∈Sk

wi,kwi,k∗

∥∥∥∥∥ ≤ 1

r

∥∥∥∥∥∥
r∑

k=1

∑
i:vi=wi,k

(√
rwi,k

) (√
rwi,k

)∗∥∥∥∥∥∥ ≤
(

1√
r
+
√
δ

)2

.

and this is true for all k.

Similar to the previous section, if we set r = 2 and δ = 1/18, it implies
Conjecture 2.2 for η = 18 and θ = 2. This could also imply Conjecture 2.3 with
r = (6/ϵ)4 which we will show later.

2.1 Linear Algebra Properties

Here, we will state some linear algebra properties that we will use. Previously,
we have introduced the rank-one update which we will also use.

For a matrix M ∈ Cd×d we write the characteristic polynomial of M in a
variable x as

χ[M ](x) = det(xI −M)

Theorem 2.6. For an invertible matrix A and another matrix B of the same
dimensions,

∂t det(A+ tB) = det(A) Tr
(
A−1B

)
We also have the following two trace properties.
For any k × n matrix A and n× k matrix B,

Tr(AB) = Tr(BA)

Second is

Lemma 2.7. If A and B are positive semidefinite matrices of the same dimen-
sion, then

Tr(AB) ≥ 0.

15



2.2 Mixed Characteristic Polynomial

Theorem 2.8. Let v1, ..., vm be independent random column vectors in Cd with
finite support. For each i, let Ai = E (viv

∗
i ). Then,

Eχ

[
m∑
i=1

viv
∗
i

]
(x) =

(
m∏
i=1

1− ∂zi

)
det

(
xI +

m∑
i=1

ziAi

)∣∣∣∣∣
z1=...=zm=0

The expected characteristic polynomial of a sum of independent rank one
Hermitian matrices is a function of the covariance matrices Ai which we will call
the mixed characteristic polynomial ofA1, ..., Am and denote by µ [A1, ..., Am] (x).
The proof of this theorem follows from the following lemma which shows that
the random rank one updates of determinants corresponds in a natural way to
differential operators.

Lemma 2.9. For every square matrix A and random vector v, we have

E [det (A− vv∗)] = (1− ∂t) det (A+ tE [vv∗])|t=0

Proof. Assume A is invertible. By Matrix Determinant Lemma, we have

E (det (A− vv∗)) = Edet(A)
(
1− v∗A−1v

)
= Edet(A)

(
1− Tr

(
A−1vv∗

))
= det(A)− det(A)ETr

(
A−1vv∗

)
= det(A)− det(A) Tr

(
A−1Evv∗

)
On the other hand, by Theorem 2.6, we have

(1− ∂t) det (A+ tEvv∗) = det (A+ tEvv∗)− det(A) Tr
(
A−1Evv∗

)
The claim follows by setting t = 0. If A is not invertible, we can choose a

sequence of invertible matrices that approach A. Since the identity holds for
each matrix in the sequence and the two sides are polynomials in the entries of
the matrix, a continuity argument implies that the identity must hold for A as
well.

By applying this lemma inductively, we could prove Theorem 2.8. By using
Lemma 1.3 in Chapter 3 and the closure properties of real-stable polynomials,
it is immediate that the mixed characteristic polynomial is real rooted.

Corollary 2.10. The mixed characteristic polynomial of positive semidefinite
matrices is real rooted.

Proof. We know that

det

(
xI +

m∑
i=1

ziAi

)

16



is real stable. From closure property,(
m∏
i=1

1− ∂zi

)
det

(
xI +

m∑
i=1

ziAi

)
is real stable as well. Now, setting all of the zi preserves real stability. Hence
the resulting polynomial is univariate and is real rooted.

We use the real rootedness of mixed characteristic polynomials to show that
every sequence of independent fisnitely supported random vectors v1, ...,vm

defines an interlacing family. Let li be the size of the support of the random
vector vi, and let vi take the values wi,1, ..., wi,li with probabilities pi,1, ..., pi,li .
For j1 ∈ [l1] , ..., jm ∈ [lm], define

qj1,...,jm =

(
m∏
i=1

pi,ji

)
χ

[
m∑
i=1

wi,jiw
∗
i,ji

]
(x)

Theorem 2.11. The polynomials qj1,...,jm form an interlacing family.

Proof. For 1 ≤ k ≤ m and j1 ∈ [l1] , ..., jk ∈ [lk], define

qj1,...,jk(x) =

(
k∏

i=1

pi,ji

)
E

vk+1,...,vm
χ

[
k∑

i=1

wi,jiw
∗
i,ji +

m∑
i=k+1

viv
∗
i

]
(x)

Let

q∅(x) = E
v1,...,vm

χ

[
m∑
i=1

viv
∗
i

]
(x)

We need to prove that for every partial assignment j1, . . . , jk, the polynomi-
als

{qj1,...,jk,t(x)}t=1,...,lk+1

have a common interlacing. By Lemma 2.12 in Chapter 2, it suffices to prove
that for every nonnegative λ1, ..., λlk+1

summing to one, the polynomial

lk+1∑
t=1

λtqj1,...,jk,t(x)

is real rooted.
Let uk+1 be a random vector that equals wk+1,t with probability λt. Then,

the above polynomial equals(
k∏

i=1

pi,ji

)
E

uk+1,vk+2,...,vm
χ

[
k∑

i=1

wi,jiw
∗
i,ji + uk+1u

∗
k+1 +

m∑
i=k+2

viv
∗
i

]
(x)

which is a multiple of a mixed characteristic polynomial and is thus real rooted
by Corollary 2.10.
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We also introduce the following proposition for real stable polynomials which
will be used in the next section

Proposition 2.12. If p ∈ R [z1, ..., zm] is real stable and a ∈ R, then p|z1=a =
p (a, z2, ..., zm) ∈ R [z2, ..., zm] is real stable.

5 The Multivariate Barrier Argument

In this section we will prove an upper bound on the roots of the mixed character-
istic polynomial µ [A1, . . . , Am] (x) as a function of the Ai. We will prove this in-
ductively with a barrier function argument. In our case of interest,

∑m
i=1 Ai = I.

The theorem is as follows:

Theorem 2.13. Suppose A1, ..., Am are Hermitian positive semidefinite matri-
ces satisfying

∑m
i=1 Ai = I and Tr (Ai) ≤ ϵ for all i. Then the largest root of

µ [A1, ..., Am] (x) is at most (1 +
√
ϵ)2.

We begin by deriving a slightly different expression for µ [A1, ..., Am] (x) that
allows us to reason separately about the effect of each Ai on its roots.

Lemma 2.14. Let A1, ..., Am be Hermitian positive semidefinite matrices. If∑
i Ai = I, then

µ [A1, ..., Am] (x) =

(
m∏
i=1

1− ∂yi

)
det

(
m∑
i=1

yiAi

)∣∣∣∣∣
y1=...=ym=x

Proof. For any differentiable function f , we have

∂yi (f (yi))|yi=zi+x = ∂zif (zi + x)

The lemma follows by substituting yi = zi+x into the right hand side expression
of the lemma, and observing that it produces the expression on the right hand
side of Theorem 2.8.

Writing

µ [A1, ..., Am] (x) = Q(x, x, ..., x) (1)

where Q(y1, ..., ym) is the multivariate polynomial on the right hand side of
Lemma 2.14. The bound on the roots of Q is defined as follows:

Definition 2.15. Let p (z1, ..., zm) be a multivariate polynomial. We say that
z ∈ Rm is above the roots of p if

p(z + t) > 0 for all t = (t1, ..., tm) ∈ Rm, ti ≥ 0

18



We will denote the set of points which are above the roots of p by Abp.
To prove Theorem 2.13, it is s by suffices by (1) to show that (1 +

√
ϵ)2 · 1 ∈

AbQ, where 1 is the all-ones vector. This is done by an inductive ”barrier
function” argument. In particular, we will construct Q by iteratively applying
operations of the form (1− ∂yi

), and we will track the locations of the roots
of the polynomials that arise in this process by studying the evolution of the
functions defined below.

Definition 2.16. Given a real stable polynomial p and a point z = (z1, ..., zm) ∈
Abp, the barrier function of p in direction i at z is

Φi
p(z) =

∂zip(z)

p(z)
= ∂zi log p(z)

Equivalently, we may define Φi
p by

Φi
p (z1, . . . , zm) =

q′z,i (zi)

qz,i (zi)
=

r∑
j=1

1

zi − λj

where the univariate restriction

qz,i(t) = p (z1, ..., zi−1, t, zi+1, ..., zm)

has roots λ1, ..., λr, which are real by Proposition 2.12.

While Φi
p are m-variate functions, the properties that we require of them

may be deduced by considering their bivariate restrictions. We establish these
properties by exploiting the following powerful characterization of bivariate real
stable polynomials.

It is stated in the form we want by Borcea and Brändén [5], and is proven
using an adaptation of a result of Helton and Vinnikov [8] by Lewis, Parrilo and
Ramana [9].

Lemma 2.17. If p (z1, z2) is a bivariate real stable polynomial of degree exactly
d, then there exist d × d positive semidefinite matrices A,B and a Hermitian
matrix C such that

p (z1, z2) = ±det (z1A+ z2B + C)

Now we will introduce some properties of the barrier functions, which is
that, above the roots of a polynomial, they are nonincreasing and convex in
every coordinate.

Lemma 2.18. [10] Suppose p is real stable and z ∈ Abp. Then for all i, j ≤ m
and δ ≥ 0,

Φi
p (z + δej) ≤ Φi

p(z), and (monotonicity)
Φi

p (z + δej) ≤ Φi
p(z) + δ · ∂zjΦi

p (z + δej) (convexity).
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We are interested in finding points that lie in AbQ, where Q is generated by
applying several operators of the form 1−∂zi to the polynomial det (

∑m
i=1 ziAi).

The purpose of the “barrier functions” Φi
p is to allow us to reason about the

relationship between Abp and Abp−∂zi
p; in particular, the monotonicity property

alone immediately implies the following statement.

Lemma 2.19. Suppose that p is real stable, that z is above its roots, and that
Φi

p(z) < 1. Then z is above the roots of p− ∂zip.

Proof. Let t be a nonnegative vector. As Φ is nonincreasing in each coordinate,
we have Φi

p(z+ t) < 1, hence

∂zip(z + t) < p(z + t) =⇒ (p− ∂zip) (x+ t) > 0

as desired.

This lemma allows us to prove that a vector is above the roots of p − ∂zip.
However, it is not strong enough for an inductive argument because the barrier
functions can increase with each 1− ∂zi operator that we apply. Thus require a
stronger form, shown in the following lemma.

Lemma 2.20. Suppose that p (z1, . . . , zm) is real stable, that z ∈ Abp, and that
δ > 0 satisfies

Φj
p(z) ≤ 1− 1

δ

Then for all i,

Φi
p−∂zj

p (z + δej) ≤ Φi
p(z)

Proof. We will write ∂i instead of ∂zi to ease typesetting and notation. We
begin by computing an expression for Φi

p−∂jp
in terms of Φj

p,Φ
i
p, and ∂jΦ

i
p :

Φi
p−∂jp =

∂i (p− ∂jp)

p− ∂jp

=
∂i
((
1− Φj

p

)
p
)(

1− Φj
p

)
p

=

(
1− Φj

p

)
(∂ip)(

1− Φj
p

)
p

+

(
∂i
(
1− Φj

p

))
p(

1− Φj
p

)
p

= Φi
p −

∂iΦ
j
p

1− Φj
p

.

= Φi
p −

∂jΦ
i
p

1− Φj
p
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since ∂iΦ
j
p = ∂jΦ

i
p. We want to show that Φi

p−∂jp
(z + δej) ≤ Φi

p(z). By the
above identity this is equivalent to

−
∂jΦ

i
p (z + δej)

1− Φj
p (z + δej)

≤ Φi
p(z)− Φi

p (z + δej)

By convexity property of Lemma 2.18.

δ ·
(
−∂jΦ

i
p (z + δej)

)
≤ Φi

p(z)− Φi
p (z + δej)

Thus it is sufficient to establish that

−
∂jΦ

i
p (z + δej)

1− Φj
p (z + δej)

≤ δ ·
(
−∂jΦ

i
p (z + δej)

)
From monotonicity of Lemma 2.18. we know that

(
−∂jΦ

i
p (z + δej)

)
≥ 0. So,

we can divide both sides of the above inequality by this term to obtain

1

1− Φi
p (z + δej)

≤ δ

Applying Lemma 2.18 once more we observe that Φj
p (z + δej) ≤ Φj

p(z), and
conclude that the above ineqaulity is implied by

1

1− Φj
p(z)

≤ δ

which is implied by the assumption of our lemma.

Now, we have the sufficient tools to prove Theorems 2.13 and 2.4.

Proof of Theorem 2.13. Let

P (y1, ..., ym) = det

(
m∑
i=1

yiAi

)
Set

t =
√
ϵ+ ϵ

As all of the matrices Ai are positive semidefinite and

det

(
t
∑
i

Ai

)
= det(tI) > 0

the vector t1 is above the roots of P . By Theorem 2.6.

Φi
P (y1, ..., ym) =

∂iP (y1, ..., ym)

P (y1, ..., ym)
= Tr

( m∑
i=1

yiAi

)−1

Ai


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So

Φi
P (t1) = Tr (Ai) /t ≤ ϵ/t = ϵ/(ϵ+

√
ϵ)

which we define to be ϕ. Set

δ = 1/(1− ϕ) = 1 +
√
ϵ.

For k ∈ [m], define

Pk (y1, ..., ym) =

(
k∏

i=1

1− ∂yi

)
P (y1, ..., ym)

Note that Pm = Q. Set x0 to be the all-t vector, and for k ∈ [m] define xk to be
the vector that is t+δ in the first k coordinates and t in the rest. By inductively
applying Lemmas 2.19 and 2.20, we prove that xk is above the roots of Pk, and
that for all i

Φi
Pk

(
xk
)
≤ ϕ.

It follows that the largest root of

µ [A1, ..., Am] (x) = Pm(x, ..., x)

is at most

t+ δ = 1 +
√
ϵ+

√
ϵ+ ϵ = (1 +

√
ϵ)2.

Proof of Theorem 2.4. Let Ai = E (viv
∗
i ). We have

Tr (Ai) = E (Tr (viv
∗
i )) = E (v∗i vi) = E

(
∥vi∥2

)
≤ ϵ,

for all i. The expected characteristic polynomial of the
∑

i viv
∗
i is the mixed

characteristic polynomial µ [A1, ..., Am] (x). Theorem 2.13 implies that the largest
root of this polynomial is at most (1 +

√
ϵ)2.

For i ∈ [m], let li be the size of the support of the random vector vi, and
let vi take the values wi,1, ..., wi,li with probabilities pi,1, ..., pi,li . Theorem 2.11
tells us that the polynomials qj1,...,jm are an interlacing family. So, Theorem
2.11 of Chapter 2 implies that there exist j1, ..., jm so that the largest root of
the characteristic polynomial of

m∑
i=1

wi,jiw
∗
i,ji

is at most (1 +
√
ϵ)2.
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