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Here, we will discuss on hyperbolicity and a related conjecture.

1 Homogeneous Polynomials

Definition 1.1. A homogeneous complex polynomial in n variables of degree d
is called hyperbolic in direction e ∈ Rn if p(e+ iy) ̸= 0 ∀y ∈ Rd. Equivalently,
if

1. p(e) ̸= 0

2. The univariate polynomial p(te+ y) is real rooted (in t) ∀y ∈ Rd.

There are non-homogeneous generalizations that we will not consider for
now. One question to ask is what is the set of all directions such that p is
hyperbolic in those directions. One reason is the following result.

Theorem 1.2. p is a real stable polynomial and p has no roots in the positive
orthant iff homogenization of p is hyperbolic in every e in the positive orthant.
[Given p, pH(z0, z1, ..., zn) = zd0p(

z1
z0
, ..., zn

z1
)]

Note: The restriction that p has no roots in the positive orthant is a purely
technical restriction. This is because most of the time p is some polynomial like
the generator of a distribution and has non-negative coefficients. Other times
it is possible to shift p by a constant such that no root of p is in the positive
orthant.

It is often easy to argue that pH is hyprbolic in some specific direction. The
question is then how do we go to proving the same for an entire orthant. To
do this, we will need to prove some structural results on the set of directions in
which p is hyperbolic. This involes a somewhat weird construction.

Definition 1.3. Let p be a polynomial hyperbolic in some direction e. Then

κ(p, e) = {x ∈ Rn : p(x− te) has positive roots}

Note: e ∈ κ(p, e) as p(e− te) = (1− t)dp(e)
Then we have the following theorem:
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Theorem 1.4. Let p be hyperbolic in direction e. Then

1. The set κ(p, e) is the connected component of Rn\{x : p(n) = 0}

2. For any v ∈ κ(p, e), p is hyperbolic in direction v.

3. ∀v ∈ κ(p, e), κ(p, e) = κ(p, v)

4. κ(p, e) is convex.

κ(p, e) is called the hyperbolicity cone of p in direction e.

Before we look at a proof, let us quickly see why this could be useful.
Suppose p is a multivariate real polynomial with positive coefficients, then

trivially p has no root in the positive orthant. Then by the theorem to prove that
p is real stable it is enough to show that p is hyperbolic in direction (1, ..., 1).
As κ (p, (1, ..., 1)) must contain the positive orthant where there is no roots of
p. Let’s now take a look at the proof

Proof sketch. For (1):
Let C be some connected component of Rn\{x : p(n) = 0}.

To show that C ⊆ κ(p, e), we take ẽ ∈ C. As C is connected, if a path
f : [0, 1] → C s.t. f(0) = e, f(1) = ẽ, then the roots of p(f(s)− te) continuously
deform as s goes from 0 to 1. On the other hand,

f(s) ∈ C =⇒ p(f(s)) ̸= 0 =⇒ p(f(s)− te)

never have roots at t = 0. Since all the roots at s = 0 are negative, all the roots
at s = 1 are also negative. Therefore C ⊆ κ(p, e)

For the other side, as κ(p, e) cannot contain roots of p, by maximality of C it
is enough to show that κ(p, e) is connected. Let ẽ ∈ κ(p, e). Then parameterize
the line segment joining ẽ and e by ẽ+ce

1+c where c ∈ [0,∞). Then

p(
ẽ+ ce

1 + c
− te) =

1

1 + c
dp(ẽ− (t(1 + c)− c)e)

So for any t that is negative, t(1+ c)− c is also negative. Thus p(ẽ− (t(1+ c)−
c)e) ̸= 0 for t < 0, c > 0. Therefore

ẽ+ ce

1 + c
∈ κ(p, e) ∀c > 0

Hence the line between ẽ, e ∈ κ(p, e). Thus, C = κ(p, e)
This also implies (4), that κ(p, e) is convex.
For (2), we will show that for any ẽ ∈ κ(p, e) and α, β > 0, x ∈ Rn, the roots

of p(βx− tẽ+ iαe) has all its roots in upper half plane H. By taking α → 0 and
β = 1, we will get that all roots of p(x− tẽ) are in H. By conjugation, all roots
of p(x− tẽ) are real.

This intuition for this idea is to treat p as a polynomial in two variables, one
in the direction of ẽ and the other in e.
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Consider the case where β = 0. Then

0 = p(−tẽ+ iαe)

= (−t)αp

(
ẽ− iα

t
e

)
Then as ẽ ∈ κ(p, e), iα

t > 0. Hence, Im(t) > 0.
Now for a general β, we will do a continuity argument. Suppose some β is

such that p(βx − tẽ − iαe) has a root in HC . Then as at β = 0, p(−tẽ + iαe)
has all roots in H. There must be some β0 by continuity such that one root of
p(β0x− tẽ+ iαe) is on the interface of H and HC . But as β0x− t0ẽ ∈ Rn,

p(β0x− tẽ+ se) has no complex root as p is hyperbolic in e.
(3) follows from (1) and (2).

To get more intuition about the set κ(p, e), consider the case when p =
det(

∑
ziAi)) where Ai are symmetric and e s.t.

∑
eiAi = I. Then κ(p, e) i.e.

x s.t. p(x− te) has positive roots is {x :
∑

xiAi is positive definite.}
Thus if we were to view κ(p, e) not as elements of Rn but as coordinates of

elements in p{A1, ..., An} and thus elements in Mn×n, κ(p, e) could be viewed
as the intersection of positive definite matrices with a hyperplane. The big
question is if it is always true, bringing us to the following conjecture

Conjecture 1.5. Let p be a homogeneous polynomial hyperbolic in e. Does
there exist a g and matrices A1, ..., An

1. fg = det(z1A1 + ...+ znAn)

2. κe(f) ⊂ κe(g)

3.
∑

eiAi > 0

Fundamentally this is of use to hyperbolic program, i.e. minx∈κ(p,e) c
Tx.

Lax conjecture says that it is the same as a SDP.

2 Open Problems

Finally, we will end off our series by introducing a open problems.

Problem 2.1. Construct a series of d−regular graphs whose second non-trivial
eigenvalue is exactly 2

√
d− 1.

This problem is to construct a “rich” enough class of such graphs. Alter-
natively, if this is not possible, can one get second order bounds on the second

eigenvalue thereby tightening the Alon-Bopanna bound of 2
√
d− 1−2 2

√
d−1−1

dist(H) .

But a less silly are the following criticisms of the current construction of
Ramanujan graphs. Bipartite graphs have two top eigenvalues. So in some
sense it is never really Ramanujan, even though both the top two eigenvalues
are considered trivial (as they have eigenvectors which are independent of the
structure of the graph).
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Problem 2.2. For any d ≥ 2, construct a sequence of d−regular graphs with
increasing vertices such that the second largest eigenvalues in modulus is smaller
than 2

√
d− 1 +O(1).

The hardness of trying to directly use interlacing arguments since it allows
us to control bounds in any one direction.

However one idea would be to somehow construct a bipartite graph from a
non-bipartite graph such that if the bipartite one is Ramanujan, so is the non-
bipartite. A somewhat related generalization comes from looking at a different
matrix from graphs called the Hashimoto non-backtracking matrix B defined as
follows.

For an undirected graph G, make it directed by doubling every edge. Then
B is a 2m× 2m matrix with

Be,f
def
=

{
1 if h(e) = t(f) and e ̸= f−1

0 otherwise

For d−regular graphs, the Ihara-Bass formula relates eigenvalues of A to
that of B. Thus one can propose a definition of Ramanujan for B, where G is
d−regular.

Problem 2.3. Prove a tight Alon-Bopanna type result on B. Construct se-
quences of raphs which satisfy tightness result.

A starting point for this problem would be to link the roots of the expected
characteristic polynomial of the non backtracking operators of the 2-lifts to the
spectral radius of the same of the universal cover.

Problem 2.4. Let h be some graph with T as universal cover. Let H be a
uniform random 2-lift. Then

|MaxRoot [EH [x(BH)]] | ≤ |ρ(BT )|

where ρ(BT ) is the spectral radius of BT

The next problem is related to the concentration results.

Problem 2.5. Under a reasonable model of generating random d−regular graphs
of size n, can one show that with constant probability or at least “good” proba-
bility the graph generated is Ramanujan.

In particular this asks if the existence of one element can be improved upon
to give a count. There are multiple related problems in this vein.

For instance the technique used to get Kadison-Singer can be slightly mod-
ified to prove the following:

Theorem 2.6. Given any graph G with n edges, there is a subset H with ⌈dn⌉
edges such that

LG ≤ LH ≤

(
d+ 1 + 2

√
d

d− 1− 2
√
d

)
LG = (1 + ϵ)LG
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Interestingly, a probabilistic version of this can be obtained by sampling in
accordance to the effective resistance of each edge. However this methodology
needs one to sample O(n log n) many edges and in fact give that with high
probability one should have the resulting gloves to be a sparsifier. It is then
reasonable to imagine that losing the log n should depreciate the w.h.p. to
constant probability.

Problem 2.7. Construct a random Algorithm that sparsifies G to have only
O(n) edges.

Another direction of problems relate to proving hyperbolicity for certain
weirder class of polynomials. For instances

Problem 2.8. Show that if L1, ..., Ln are line segments. Then the Steiner
polynomial given by

p(z1, ..., zn) = vol(
∑

zlLi)

is hyperbolic, where L1 + L2 is the set of Minkowski sum.

This is then related to a L1 − s version of Weaver’s conjecture which among
other things prove Goddyn’s conjecture, which in turn will allow a constant
factor approximate solution to the travelling salesman problem.

In particular the Weaver’s conjected which is proved says for any vectors vi
satisfying

⟨vi, x⟩2 ≤ ϵ
∑
j

⟨vj , x⟩2

There is a partition T1 ∪ T2 = [n] such that

∑
i∈Tj

⟨vi, x⟩2 ≤
(
1

2
+O(

√
ϵ)

) m∑
i=1

⟨vi, x⟩2

The open problem is

Problem 2.9. Can one replace all the ⟨vi, x⟩2 terms by |⟨vi, x⟩|.
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